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Abstract

Achieving robust anytime performance in combinatorial optimization requires a1

delicate balance between exploration and exploitation. Effective strategies in the2

optimization literature typically involve: (i) evolving multiple search trajectories3

for each instance, (ii) preserving diversity among them, and (iii) exploring the4

entire search space in a structured manner. Most Neural Combinatorial Optimiza-5

tion (NCO) methods, however, rely on either simple constructive heuristics or6

single-trajectory local search, causing them to underperform when compared to7

state-of-the-art methods. In this work, we introduce a collaborative multi-agent8

system that effectively balances exploration and exploitation, bridging the gap be-9

tween learning-based and classical methods, and achieving unprecedented anytime10

performance in NCO. Each agent iteratively refines a candidate solution while11

sharing information through a centralized memory, promoting both cooperation12

and search diversity. When an agent becomes trapped in a local optimum, it dis-13

cards its current solution and uses a conditioned constructive network to generate14

a new, high-quality solution that differs from those of other agents. Empirical15

evaluations on multiple binary combinatorial benchmarks, including Maximum16

Cut and Maximum Independent Set, show that our framework achieves superior17

anytime performance compared to existing NCO methods and improves upon the18

state-of-the-art specialized solvers.19

1 Introduction20

Neural Combinatorial Optimization (NCO) [Bengio et al., 2021, Mazyavkina et al., 2021, Bello21

et al., 2016] represents an emerging framework that aims to address Combinatorial Optimization22

Problems (COPs) through Neural Networks (NN) in an end-to-end manner. The core premise of23

NCO is its ability to perform a train-once, infer-multiple-times approach, where a trained NN model24

can generalize to unseen problem instances without necessitating retraining for each new instance.25

Making NCO approaches suitable for scenarios where rapid inference over many instances is required,26

such as online decision-making systems [Luo et al., 2024], real-time applications [Cappart et al.,27

2023], or large-scale optimization pipelines [Zhou et al., 2024].28

Early NCO approaches focused primarily on constructing solutions from scratch using neural net-29

works to build approximate solutions in an autoregressive fashion. These methods, known as Neural30

Constructive (NC) methods [Vinyals et al., 2015, Bello et al., 2016, Kool et al., 2018, Kwon et al.,31

2020], initiate the process with an empty structure and incrementally add one component at a time32

until a complete and feasible solution is formed. Although effective, NC methods are inherently33

limited by the construction of a single solution: they commit early to substructures without the34

ability to revise decisions [Sun et al., 2024]. This myopic search behavior limits exploration, reduces35

solution diversity, and hampers scalability to larger or more complex instances [Son et al., 2025].36

To mitigate the exploration limitations of NC methods, the research community has developed Neural37

Improvement (NI) methods [Chen and Tian, 2019, Lu et al., 2019, Barrett et al., 2020, Wu et al., 2021].38
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Inspired by classical local search heuristics [Blum and Roli, 2003], NI methods use NNs to iteratively39

refine a single candidate solution by modifying specific components. Although this enables exploring40

the local neighborhood, the search often remains confined to a narrow region: once a promising area41

is identified, the method tends to exploit it excessively, limiting broader exploration [Garmendia et al.,42

2023].43

These issues in NCO and the success of classical optimization techniques highlights a critical gap.44

The most successful combinatorial optimization algorithms, such as metaheuristics [Blum and Roli,45

2003] and exact solvers [Gurobi Optimization, LLC, 2023], often rely on three key principles: (i)46

maintaining a diverse population of candidate solutions [Mitchell, 1998, Bonyadi and Michalewicz,47

2017], (ii) promoting diversity among individual search agents [Baste et al., 2022, Ren et al., 2024],48

and (iii) systematically exploring the search space in a structured way [Modaresi et al., 2020, Jooken49

et al., 2023]. Together, these strategies enhance the robustness of the search process and help prevent50

premature convergence to suboptimal regions.51

Yet, most existing NCO methods do not incorporate these principles, leading to limited anytime52

performance, i.e., the ability to improve solutions over time. As shown in Figure 1, previous NCO53

approaches struggle to further improve these solutions when given additional computational budgets.54

(a) NC methods (FlowNet, DiffUCO) on 500 RB
graphs (200–300 nodes) for Maximum Independent
Set.

(b) Baseline NI methods (ECO-DQN, MARCO,
ANYCSP) on 128 ER graphs (700–800 nodes) for
Maximum Cut.

Figure 1: Average objective values of the best solutions found by (a) NC and (b) NI methods. Plateaus
indicate periods of stagnation despite continued computation. Results include our method (detailed
later) to illustrate the performance gap motivating this work.

Our goal is to advance the anytime performance of NCO models by introducing more sophisticated55

techniques capable of outperforming current state-of-the-art designs. To this end, we propose Multi-56

Agent Learning for Optimization with Trajectory Exploration (MALOTE), a collaborative multi-agent57

reinforcement learning framework. MALOTE deploys multiple search agents in parallel, each58

improving a candidate solution while sharing information through a centralized memory that prevents59

revisiting previously explored solutions. To enhance exploration of the search space, each agent is60

equipped with an exploration module that activates when progress stalls in a non-improving region.61

Upon activation, the exploration module discards the agent’s current solution and generates a new,62

high-quality candidate that is explicitly diverse from those of other agents, using a conditioned neural63

constructive network.64

MALOTE is designed to be broadly applicable across different combinatorial optimization prob-65

lems. In this work, we validate its effectiveness on two representative problems, Maximum Cut66

(MC) [Dunning et al., 2018] and Maximum Independent Set (MIS) [Lawler et al., 1980]. We also67

provide practical guidelines for extending MALOTE to alternative problems. Experimental results68

show that MALOTE not only surpasses previous state-of-the-art problem-specific algorithms on69

several benchmarks, but also exhibits strong generalization, achieving these results despite being70

trained on smaller graphs.71

The main contributions of this paper are as follows. (a) We introduce Multi-Agent Learning for72

Optimization with Trajectory Exploration (MALOTE), a novel multi-agent framework augmented73
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with a shared memory component. (b) We design a dual-module agent architecture comprising74

a first module for iterative improvement of candidate solutions, and a second module to enable75

global exploration by restarting the search when agents get stuck in non-improving regions. (c) We76

introduce a novel conditioned Neural Constructive (cNC) network, that generates new solutions77

conditioned by an exploration weight, which dynamically adjusts the emphasis between optimizing78

solution quality and exploring diverse solution spaces. (d) We demonstrate that a single trained79

model can generalize across graph sizes and distributions, highlighting strong transfer capabilities.80

(e) We validate MALOTE on two classic combinatorial optimization problems: Maximum Cut and81

Maximum Independent Set. (f) We conduct comprehensive evaluations by benchmarking MALOTE82

against exact methods, heuristics, metaheuristics, learning-based approaches, and ablation studies to83

assess the impact of each component.84

2 Related Work85

In this section, we review the main contributions in NCO, structured around two core methodological86

families: Neural Constructive (NC) and Neural Improvement (NI) approaches. We mention the87

key limitations of these methods and examine how recent developments have addressed them with88

memory-based strategies and multi-agent architectures.89

Neural Constructive methods. Initial NC proposals by Vinyals et al. [2015] and Bello et al.90

[2016] introduced the Pointer Network, which constructs approximate solutions for the Traveling91

Salesperson Problem using Supervised Learning (SL) and Reinforcement Learning (RL), respectively.92

Subsequently, Khalil et al. [2017] proposed the structure2vec (S2V) architecture, capable of repre-93

senting the graph structure of various COPs and training it with Q-learning. These were followed94

by a large number of incremental works, which extended the NC pipeline to different problems,95

such as the Maximum Cut [Barrett et al., 2022], the Maximum Independent Set [Ahn et al., 2020]96

and Job Shop Scheduling Problem [Zhang et al., 2020]; or using improved neural architectures,97

such as Graph Neural Networks [Cappart et al., 2023] or Transformers [Bresson and Laurent, 2021].98

Moreover, apart from SL and RL paradigms, the NCO field has recently seen a growing interest99

in generative sampling frameworks based on Unsupervised Learning (UL), particularly through100

diffusion probabilistic models [Sun et al., 2023, Sun and Yang, 2023, Sanokowski et al., 2024].101

Despite these advances, previously proposed NC methods remain limited due to their inherently102

Markovian structure, which ignores information from previously generated solutions. As a result,103

they are prone to redundancy, often producing similar or even duplicate outputs.104

Neural Improvement Methods. Common architectures used in NI include Long Short-Term105

Memory (LSTM) networks [Chen and Tian, 2019], GNNs [Barrett et al., 2020] and attention-based106

models [Lu et al., 2019, Hottung and Tierney, 2020].107

For instance, Chen and Tian [2019] use an LSTM to score regions for modification and select the108

corresponding rules. Lu et al. [2019] apply attention mechanisms to choose local operators for the109

capacitated vehicle routing problem. Similarly, Hottung and Tierney [2020] propose a large neural110

neighborhood search that uses attention to destroy and repair solution segments. Wu et al. [2021]111

train policies to select node pairs for applying local operators like 2-opt for routing problems, while112

da Costa et al. [2020] extend this approach to k-opt operators.113

As the mentioned NC works, these NI approaches lack mechanisms to account for previously114

visited solutions, making them susceptible to repetitive cycles and revisiting identical or similar solu-115

tions [Garmendia et al., 2024]. This shortcoming makes it difficult for NI approaches to outperform116

classical metaheuristics [Blum and Roli, 2003], which typically use mechanisms such as tabu lists or117

population diversity to prevent revisiting the same solutions. To address this issue, recent work in118

NCO has introduced explicit memory components to track and avoid previously explored solutions.119

Memory-based Neural Methods. ECO-DQN [Barrett et al., 2022], an improvement-based frame-120

work, tracks recent action histories to prevent immediate backtracking on solution modifications.121

Similarly, MEMENTO [Chalumeau et al., 2024] extends NC methods by maintaining a repository of122

past solutions and consulting this memory to avoid redundant exploration. Although these schemes123

effectively reduce cyclic behavior along a single search trajectory, their reliance on one trajectory124

often restricts exploration to narrow regions of the solution space. More expansive and diverse125
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exploration can be achieved by deploying multiple concurrent search trajectories, as realized in126

multi-agent paradigms. Building upon these, MARCO Garmendia et al. [2024] introduces a memory127

module that stores entire solutions along with their corresponding actions, while punishing the model128

whenever it proposes a repetitive move during training.129

Multi-Agent Systems. Some multi-agent methods fall under this broader taxonomy, although they130

typically consist of agent populations where each agent is specialized for different types of problem131

instances, rather than collaboratively tackling the same instance. For example, Poppy [Grinsztajn et al.,132

2023] trains a population of RL agents, each tailored to a specific class of instances. PolyNet [Hottung133

et al., 2024] generalizes this concept by using a single model conditioned on an input vector to select134

among multiple policies.135

Closer to collaborative approaches are methods that integrate neural networks into classical population-136

based metaheuristics. DeepACO [Ye et al., 2024], for instance, combines neural networks with Ant137

Colony Optimization (ACO) [Dorigo and Stützle, 2019], using learned heuristics to guide the search138

and refine solutions. While ACO is inherently population-based, DeepACO primarily functions as139

a neural enhancement layered on top of a conventional algorithm, rather than a fully end-to-end140

population-based neural optimization method.141

MARCO [Garmendia et al., 2024] can also be interpreted as a multi-agent system, where a parallel142

population of NI agents tackles the same instance. However, these agents are not trained collabora-143

tively: each maintains its own memory without access to shared information. As a result, exploration144

remains localized, lacking global coordination or broader search strategies.145

3 Problem Formulation146

We consider a combinatorial optimization problem defined on an instance I, consisting of a set of147

elements V to be optimized under certain constraints and objectives. Let S denote the set of all148

feasible solutions for instance I. Each solution s ∈ S has an associated objective value f(s), which149

measures its quality. The goal is to find the optimal solution:150

s∗ = argmax
s∈S

f(s),

where the maximization (or minimization, depending on the problem) is performed over all feasible151

solutions in S.152

4 MALOTE153

In this section, we introduce MALOTE (Multi-Agent Learning for Optimization with Trajectory154

Exploration), a multi-agent reinforcement learning framework [Busoniu et al., 2008, Albrecht et al.,155

2024] designed for NCO. A general overview of the framework is shown in Figure 2.156

Formally, we define a population of RL agents A = {A1, A2, . . . , Ak}, where each agent Ai157

maintains a candidate solution si ∈ S.158

In each iteration t, an agent Ai proposes an action that modifies its current solution sti to produce159

a (potentially better) new solution st+1
i . Depending on the specific combinatorial problem, these160

actions may include operations such as adding, removing, swapping, or flipping the elements or their161

values within the solution, or even replacing entirely the candidate solution with a new one. These162

new solutions are stored in a shared memoryM accessible by the entire population (see the left163

section of Figure 2).164

To determine the action, each agent receives a representation of the current optimization process,165

referred to as the state xt. The state xt
i of agent Ai comprises:166

• I: Problem Instance. Includes the complete problem description, such as the graph167

structure (adjacency matrix) and node- or edge-features, which define all constraints and168

parameters.169

• sti: Current Candidate Solution. Represents the current attempt of agent Ai in the solution170

space.171
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Figure 2: Pipeline of MALOTE. Each agent i receives a state xt
i, comprising the problem instance I,

current solution sti, memory-based historical dataM and the optimization context ot
i. A router selects

the appropriate module: the improvement module refines sti using a neural improvement model, while
the exploration module replaces it with a new solution generated by a conditioned neural constructive
model. This model balances quality and diversity with respect to a memory subset K, guided by an
exploration weight ω. The resulting solution st+1

i is stored in memory and integrated into the updated
state xt+1

i .

• M: Shared Memory. A centralized repository for storing all solutions explored by the172

agents, enabling shared learning and avoidance of duplicate work.173

• ot
i: Optimization Context. Contains agent Ai’s additional, time-specific details (e.g., past174

performance or number of non-improving moves) that help adjust its strategy.175

To effectively balance exploration and exploitation during the search, each agent is equipped with176

two specialized modules: an improvement module and an exploration module. A central com-177

ponent called the router dynamically decides which module to activate, depending on the current178

optimization context (see the center section of Figure 2). The improvement module applies a NI179

policy to refine the current solution, aiming to incrementally improve its quality. However, if the180

progress made by the NI policy stalls, the exploration module replaces the current solution with a181

new one via a NC policy. This new solution is generated based on a trade-off between quality and182

diversity, controlled by a conditioning weight (see the right side of Figure 2).183

We elaborate on the functionalities and mechanisms of the modules and the router in the following184

sections. While we present our approach in the context of binary optimization problems, it is185

generalizable to other problem types. In Appendix B, we discuss how it can be adapted to permutation-186

based problems.187

4.1 Improvement Module: Memory-based Neural Improvement Method188

The memory-based NI policy, πNI, refines solutions by taking an input ximpr
i = (I, si,M), consisting189

of the problem instance, agent i’s current solution si, and shared memory informationM. It produces190

an action ai ∈ A to improve the solution as follows:191

s′i = ApplyAction(si, ai).

For binary problems, the ApplyAction function flips a specific bit. Formally, given a solution192

si = (si1, si2, . . . , sin) ∈ {0, 1}n, action ai corresponds to selecting an index j ∈ {1, . . . , n},193

indicating the bit to flip. The updated solution s′i is thus:194

s′ik =

{
1− sik, if k = j,

sik, otherwise.

The training of the improvement policy employs a reward function with two components: an195

improvement reward and a repetition penalty.196

The improvement reward captures the increase in the objective value of a candidate solution. Instead197

of assigning a reward for every action based on its immediate effect on the objective value, following198
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recent NI approaches [Barrett et al., 2020, Chalumeau et al., 2024], we use the best solution achieved199

by each agent, denoted as ŝi, as a reference point. The improvement reward is only given when an200

agent discovers a solution that surpasses this baseline, and zero otherwise.201

Ri
obj = max[f(s′i), f(ŝi)]− f(ŝi). (1)

This ensures that the cumulative reward that an agent receives throughout its entire trajectory202

corresponds to the total improvement in the objective value.203

The repetition penalty discourages agents from visiting solutions already present in the shared memory204

M. For agent Ai, the penalty is defined as:205

Ri
rep =

{
−1 if s′i ∈M,

0 otherwise.
(2)

The total reward is calculated as RNI = Ri
obj +wrep×Ri

rep where wrep is the repetition penalty weight.206

For a complete description of the training methodology for the NI model, refer to Appendix C.207

4.2 Exploration Module: Conditioned Networks for Balancing Quality and Diversity208

The Exploration Module aims to prevent premature convergence by maintaining a diverse set of209

solutions in the population. To achieve this, we employ Conditioned Networks [Abels et al., 2019], a210

neural architecture originally developed for multi-objective reinforcement learning tasks [Felten et al.,211

2024]. Conditioned networks incorporate conditioning variables as context into their input, enabling212

the network to dynamically adjust its policy based on external parameters or specific objectives.213

Specifically, we propose a conditioned Neural Constructive (cNC) policy πcNC that, given an instance214

I , a fixed subset of previously visited solutions K ⊆M, and an exploration weight ω ∈ [0, 1] as part215

of its input, generates a new candidate solution balancing two competing goals: solution quality and216

diversity with respect to previously visited solutions. Here, ω directly modulates this balance, with217

higher values promoting exploration (generating more diverse solutions) and lower values favoring218

exploitation (producing higher-quality solutions).219

We use a fixed-size subset K instead of the dynamic memory to maintain consistent input dimensions220

and computational tractability. K contains exactly the most recent solution from each agent, ensuring221

|K| = |A|.222

Given input xexplor
i = (I,K, ω), the policy πcNC outputs a heatmap indicating preference scores for223

each item’s inclusion. This heatmap is decoded into a solution using a Non-Autoregressive (NAR)224

approach [Joshi et al., 2020], which constructs the solution in a single step by greedily assigning225

the highest-valued choice for each item. Compared to autoregressive decoding, requiring O(|V |)226

sequential network evaluations, NAR decoding significantly reduces computational complexity to227

just a single forward pass, where |V | is the number of items or nodes in the problem.228

During training, the cNC model uses a bi-objective reward function that considers a linear combina-229

tion of quality and diversity rewards weighted by the condition weight ω used as input:230

RcNC(s
′
i) = (1− ω) · f(s′i) + ω · 1

|K|
∑
m∈K

d(s,m). (3)

Here f(s′i) is the objective value of the generated solution s′i, and d(s′i,m) is a distance metric231

measuring the dissimilarity between the new solution and the reference solution m 1.232

Rather than uniformly sampling the exploration weight ω during different training episodes, we233

observed that focusing on extreme values (near 0 and 1) facilitates more effective learning of the234

Pareto front boundaries. Consequently, in each episode we sample ω from a Beta distribution with235

parameters α = β = 0.2, which biases sampling towards these extreme values. The improved Pareto236

front achieved by the cNC model using this biased sampling is empirically validated in Appendix D.237

During inference, we leverage the cNC model’s ability to adjust the exploration weight using a238

cooling schedule based on the remaining execution budget. Specifically, for each iteration t out of a239

1We use the bitwise Hamming distance for binary solution vectors.
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total budget Tmax, the exploration weight is defined as:240

ω(t) = ωstart

(
1− t

T

)ϕ

(4)

where ωstart is the initial exploration weight and ϕ > 0 is a cooling factor that controls the curvature241

of the cooling schedule. We analyze the effect of different cooling schedules in the Appendix D.2.242

4.3 Router243

The Router dynamically assigns agents to either the Improvement Module or the Exploration Module244

based on their performance.245

By default, agents use the Improvement Module to refine their current solutions. To prevent stagnation,246

the router monitors the number of consecutive iterations during which an agent fails to achieve an247

improvement in its solution. If this count exceeds a predefined patience threshold (Npatience), the248

Router redirects the agent to the Exploration Module to start the search from a new candidate solution.249

We provide a detailed ablation study in Appendix E that systematically varies Npatience and analyzes250

its impact on both solution quality and convergence.251

To provide a comprehensive understanding of the interactions between the modules and the router,252

we present the pseudo-code for MALOTE’s inference procedure in Appendix F.253

4.4 Neural Network Architecture254

Both the improvement policy πNI and the exploration policy πcNC are parameterized by Graph255

Transformers (GT) [Dwivedi and Bresson, 2020], which ensure size- and permutation-invariance256

through self-attention over graph-structured inputs. GT encodes node and edge features into latent257

embeddings, which are decoded into policy-specific logits. For πNI, the decoder outputs one logit per258

node in V , indicating the probability of flipping each corresponding node. For πcNC, it produces a259

|V |× 2 heatmap, assigning scores for class 0 or 1, which is greedily decoded into a solution. Detailed260

hyperparameters and training configurations of the GT model are presented in Appendix G.261

5 Experiments262

We evaluate MALOTE on two benchmark problems, Maximum Cut (MC) [Dunning et al., 2018]263

and Maximum Independent Set (MIS) [Lawler et al., 1980], with formal definitions and feature264

processing details provided in Appendix A.265

For each problem, we train the NI and cNC models on randomly generated Erdős–Rényi (ER) graphs266

with a 15% edge probability and sizes ranging from 50 to 200 nodes. During inference, we use267

a population size of |A| = 20 per instance, set a patience threshold of Npatience = 500 steps for268

the router, and apply a linear cooling factor ϕ = 1 for the exploration weight of the cNC model.269

Additional parameters used for inference are provided in Appendix G.270

Following recent studies [Ahn et al., 2020, Böther et al., 2021, Zhang et al., 2023], we assess271

MALOTE’s generalization on larger ER graphs (700–800 nodes) and on more challenging RB272

graphs [Xu and Li, 2000] (800–1200 nodes).273

For a more comprehensive comparison, we include exact methods using the GUROBI solver [Gurobi274

Optimization, LLC, 2023], greedy heuristics, metaheuristics such as Genetic Algorithms275

(GA) [Kramer and Kramer, 2017] and Particle Swarm Optimization (PSO) [Kennedy and Eber-276

hart, 1995], specialized algorithms like BURER [Burer et al., 2002] for MC and KAMIS [Lamm et al.,277

2016] for MIS, and learning-based methods including S2V-DQN [Khalil et al., 2017], ECO-DQN [Bar-278

rett et al., 2020], FlowNet [Zhang et al., 2023], ANYCSP [Tönshoff et al., 2023], MARCO [Gar-279

mendia et al., 2024] for MC, and additionally DGL [Böther et al., 2021], LwD [Ahn et al., 2020],280

INTEL [Li et al., 2018] and DiffUCO [Sanokowski et al., 2024] for MIS. Together, these methods281

span a broad spectrum of algorithms, including the state-of-the-art techniques. For full details on the282

benchmark methods, see Appendix H.283

7



Exact methods, heuristics, and metaheuristics have been executed using a cluster with 32 Intel Xeon284

X5650 CPUs. MALOTE and the other learning-based methods have been implemented using PyTorch285

2.0, and a Nvidia H100 GPU has been used to train the models and perform inference 2.286

Table 1: MC and MIS performance table. The best overall results are highlighted in bold. *Used to
compute the ratios.

ER700-800 RB800-1200

Method Type Objective ↑ Ratio ↑ Time ↓ Objective ↑ Ratio ↑ Time ↓

M
ax

im
um

C
ut

(M
C

)

GUROBI Exact 24048.93 0.992 10m 23729.44 0.747 10m
Greedy Heuristic 23774.79 0.980 0.03s 30619.32 0.964 0.04s
GA Metaheuristic 24211.64 0.999 1m 31762.89 1.000 1m
PSO Metaheuristic 24201.78 0.999 1m 31764.80* 1.000 1m
BURER Specialized 24235.93* 1.000 1m 29791.52 0.938 1m

S2V-DQN RL / NC 21581.79 0.890 10.1s 22014.93 0.693 13.4s
FlowNet UL / NC 21727.19 0.896 2.25m 23410.60 0.785 2.97m
ECO-DQN RL / NI 24114.06 0.994 2.10m 29638.78 0.933 3.00m
ANYCSP RL / NI 24211.00 0.999 35.7m 31544.76 0.993 42.4m
MARCO RL / NI 24205.97 0.998 1.67m 29780.71 0.938 2.75m

cNC RL / NC 23394.25 0.965 0.01s 18405.78 0.579 0.01s
MALOTEs RL / NI + cNC 24231.19 1.000 30s 31766.79 1.000 30s
MALOTE RL / NI + cNC 24238.82 1.000 5m 31767.55 1.000 5m

M
ax

im
um

In
de

pe
nd

en
tS

et
(M

IS
) GUROBI Exact 43.64 0.970 10m 41.34 0.957 10m

Greedy Heuristic 38.85 0.863 0.05s 37.78 0.875 0.06s
GA Metaheuristic 43.97 0.977 1m 41.39 0.959 1m
PSO Metaheuristic 43.69 0.971 1m 41.19 0.955 1m
KAMIS Specialized 44.98* 1.000 1m 43.15* 1.000 1m

DGL SL / Hybrid 38.71 0.861 11s 32.32 0.750 2.61s
INTEL SL / Hybrid 41.13 0.913 10s 34.24 0.794 2.44s
LwD RL / NI 41.17 0.915 4s 34.50 0.799 0.86s
FlowNet UL / NC 41.14 0.914 2s 37.48 0.868 0.46s
DiffUCO UL / NC 42.21 0.938 2.6s 38.87 0.900 0.42s
MARCO RL / NI 43.78 0.973 17s 40.13 0.930 6s

cNC RL / NC 38.96 0.866 0.03s 35.39 0.820 0.04s
MALOTEs RL / NI + cNC 44.96 1.000 30s 39.97 0.926 30s
MALOTE RL / NI + cNC 45.38 1.009 5m 40.97 0.949 5m

5.1 Performance Experiments287

We evaluate our framework using three key metrics: the average objective value f(s) over the entire288

dataset, the performance ratio R(s) = f(s)
fbest

, where fbest represents the best known objective value for289

the instance, and the average execution time per instance.290

In this first experiment, we aim to showcase the best possible performance of each method by setting291

time or iteration limits tailored to their design. Exact methods, such as Gurobi, are allowed 10 minutes292

to find high-quality solutions. Heuristics run until they reach their final solution. Metaheuristics and293

specialized algorithms run for 1 minute per each instance. Learning-based baselines follow the limits294

and setups proposed in their original papers. Our proposed method, MALOTE, is evaluated with a295

short 30-second run (MALOTEs), and a longer time limit of 5-minutes (MALOTE).296

As shown in Table 1, MALOTE outperforms all evaluated methods on the MC-ER, MC-RB, and297

MIS-ER benchmarks, and achieves the best performance among learning-based approaches across298

all four benchmarks. Notably, our standalone cNC policy, run with the exploration weight set to 0,299

achieves reasonable performance in a single inference pass, offering a remarkably fast alternative to300

traditional greedy heuristics.301

Regarding computational time, it is important to note that CPU vs. GPU runtimes are not directly302

comparable. While we include average runtime primarily to provide a coarse view of computational303

cost, our focus is on solution quality and anytime performance. In some experiments, MALOTE is304

given a larger time budget than certain baselines, mainly because it had not yet converged to its best305

2The source code, along with all scripts necessary to reproduce the experimental results presented in this
paper, will be made publicly available upon manuscript acceptance.
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solution. However, as we will demonstrate in the following experiment, MALOTE still outperforms306

these baselines even when given a substantially shorter execution time.307

5.2 Anytime performance308

While MALOTE performs strongly under the proposed time limits (5 minutes and 30 seconds), it is309

also important to assess its behavior under varying time budgets, that is, its anytime performance. To310

this end, Figure 3 shows the best objective values obtained over time across different benchmarks.311

The results demonstrate that MALOTE consistently delivers superior solution quality compared to all312

evaluated baselines across all MC datasets and on ER graphs in the MIS problem.313

(a) MC - ER 700-800 (b) MC - RB 800-1200 (c) MIS - ER 700-800 (d) MIS - RB 800-1200

Figure 3: Anytime performance of MALOTE and baselines.

Additional Experiments In Appendix J, we compare MALOTE against equivalent metaheuristics,314

such as Genetic Algorithms (GA) and Particle Swarm Optimization (PSO), under varying time315

budgets. The impact of centralized memory during training is analyzed in Appendix I. Lastly, ablation316

studies on MALOTE, along with their corresponding anytime performance curves, are reported in317

Appendix J.1.318

6 Conclusions319

In this paper, we introduced MALOTE, a multi-agent reinforcement learning framework that balances320

exploration and exploitation for robust anytime performance. By combining multiple agents, each321

with exploration and improvement modules, and a centralized memory, MALOTE fosters diversity322

and mitigates premature convergence. Experiments on Maximum Cut and Maximum Independent Set323

confirm its ability to steadily improve solutions with extended computational budgets, outperforming324

state-of-the-art methods on three of four evaluated benchmarks.325

Limitations and Future Work While MALOTE demonstrates promising results, there are numer-326

ous opportunities for future investigation. One limitation comes from the information loss incurred327

when the cNC policy considers only a subset of visited solutions. This sub-sampling discards poten-328

tially valuable information about the search history. Future work could explore methods to mitigate329

this information loss, such as developing techniques to aggregate or summarize the dynamically330

changing information of past visited solutions, perhaps through learned embeddings or more so-331

phisticated memory structures. Another area for improvement lies in the control flow between the332

exploration and improvement modules. Currently, the routing strategy that determines when to exe-333

cute each module is relatively simple. Exploring more intelligent and adaptive routing strategies could334

further refine performance and potentially reduce unnecessary computation by dynamically routing335

to each module based on the current state of the search. Finally, it would be particularly interesting336

to explore the use of the conditioned Neural Constructive policy in multi-objective combinatorial337

optimization problems, where balancing competing objectives could further highlight its strengths.338
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A Application to the Maximum Cut and Maximum Independent Set479

In this study, we address two fundamental graph-based combinatorial optimization problems: Maxi-480

mum Cut (MC) [Dunning et al., 2018] and Maximum Independent Set (MIS) [Lawler et al., 1980].481

Both problems are defined on an undirected graph G = (V,E), where V represents the set of nodes482

and E denotes the set of edges.483

A.1 Maximum Cut (MC)484

The Maximum Cut problem seeks to partition the node set V into two disjoint subsets V1 and V2485

such that the number of edges between these subsets, known as the cut size, is maximized. Formally,486

given a binary solution vector s ∈ {0, 1}|V |, where su = 0 if node u is assigned to V1 and su = 1 if487

assigned to V2, the objective function can be expressed as:488

max
s

∑
(u,v)∈E

δ(su ̸= sv), (5)

where δ(·) is the Kronecker delta function, which equals 1 if its argument is true and 0 otherwise.489

A.2 Maximum Independent Set (MIS)490

The Maximum Independent Set problem aims to identify the largest possible subset of nodes S ⊆ V491

such that no two nodes in S are adjacent; that is, (u, v) /∈ E for all u, v ∈ S. Formally, given a binary492

solution vector s ∈ {0, 1}|V |, where su = 1 if node u is included in the independent set and su = 0493

otherwise, the objective function can be formulated as:494

max
s

∑
u∈V

su subject to su + sv ≤ 1 ∀(u, v) ∈ E. (6)

A.3 Feature Encoding495

As discussed in Section 4, both the NI and cNC policies rely on node and edge features to iteratively496

modify or construct a solution, respectively. These features capture information from the problem497

instance, the current solution (in the case of NI), a set of reference solutions stored in memory, or a498

conditioning value (used by cNC).499

For both MC and MIS, instance information is derived from the graph’s adjacency matrix (and500

optionally, edge weights). This structure is encoded as edge features, where each edge is represented501

by a binary vector using a one-hot encoding scheme to indicate the presence or absence of a connection502

between node pairs.503

In binary problems like MC and MIS, a solution can be naturally represented as a binary node feature504

vector, assigning each node a feature value of 0 or 1. To encode memory information in the NI505

policy, we follow the approach of Garmendia et al. [2024], where the k nearest solutions in memory506

M, measured by their similarity to the current solution, are selected and aggregated. Similarity is507

computed by the inner product ⟨s, si⟩ between the current solution s and each solution si ∈M. The508

resulting aggregation is a weighted average over the k selected solutions, producing a continuous509

node feature vector of dimension |V |, which serves as an additional input to the NI policy.510

In the cNC policy, the fixed set of reference solutionsK is encoded by assigning one feature dimension511

per solution si ∈ K. Thus, the reference set contributes |K| additional node features. Additionally,512

the conditioning parameter, or exploration weight ω, is appended as a constant scalar feature to each513

node, providing one more node feature dimension.514

In terms of feature breakdown:515

• NI policy: Each edge is assigned one feature to represent the problem instance (e.g., edge516

presence or weight). Each node receives two features: one from the current solution (a517

binary value) and another from the aggregated memory information.518

• cNC policy: Each edge also has one instance-based feature. Each node receives |K| features519

from the reference solutions, plus one feature for the exploration weight, resulting in a total520

of |K|+ 1 node features.521
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A.3.1 Exploiting Symmetries522

Exploiting the symmetry in the MC problem, where inverting all node assignments yields solutions523

with identical objective values, we introduce an specific encoding strategy for the cNC model. We524

preset the first node to a fixed set (e.g., value = 1) to establish a reference point. Additionally, we525

assign a learnable parameter to this first node and a separate learnable parameter to the remaining526

nodes, to allow the model to recognize the reference node.527

B Application of MALOTE to Alternative Problems528

To adapt MALOTE to a new combinatorial optimization problem, three key components must be529

addressed:530

Input Feature Representation. The first step involves defining suitable node and edge features531

specific to the problem at hand. These features encode the structure and constraints of the problem532

instance. Once defined, they are processed by the encoder—such as the Graph Transformer (GT)533

architecture used in this work (detailed in Appendix G)—to produce node (and optionally edge)534

embeddings.535

Action Mapping. The second step requires adapting how these embeddings are used to take actions.536

In the case of NI, this means modifying a current solution based on the embeddings. For the cNC537

policy, this entails constructing new solutions from scratch using the embeddings and the current538

exploration weight.539

Memory and Similarity Integration. Finally, integrating the shared memory component involves540

defining a suitable representation for storing solutions and designing a problem-specific similarity541

metric to retrieve the k-nearest neighbors. These metrics are also used to condition the cNC policy542

during training and inference.543

In the following, we illustrate how these three components can be instantiated for three representative544

problems: the Traveling Salesman Problem (TSP), the Knapsack Problem (KP), and the Job-Shop545

Scheduling Problem (JSSP).546

B.1 Graph Features in Alternative Problems547

The formulation of node and edge features varies depending on the problem domain.548

In the TSP, node features can be defined using the spatial coordinates of the cities, while edge features549

typically represent the distances between city pairs.550

In the KP, nodes correspond to items, with their primary node feature being the item’s weight. The551

total knapsack capacity can either be appended as a global scalar feature to each node or, alternatively,552

item weights can be normalized by the knapsack capacity to reflect their relative contribution.553

The JSSP presents a more complex structure, as it involves two distinct entities: jobs and machines.554

A natural representation is to use a heterogeneous graph, where each node corresponds to either a job555

or a machine. Node features should therefore include an indicator denoting the type of node (job or556

machine). Edge features are used to encode processing times: an edge from job node i to machine557

node j carries the processing time required for job i on machine j, if such an operation is defined.558

B.2 Actions in Alternative Problems559

Defining actions varies significantly depending on the type of policy: NI or cNC, and the nature of560

the problem.561

In TSP and other permutation-based problems, NI actions correspond to modifications of the current562

permutation of nodes. These include common local operators such as swap, insertion, or 2-opt, all of563

which can be represented by a pair of nodes (i.e., an edge). Consequently, it is advantageous to use564

edge embeddings, allowing the decoder to output edge logits. At each step, a probability distribution565

over edges defines the likelihood of each possible modification.566
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In the cNC setting for TSP, solutions are typically constructed greedily using edge-based heatmaps,567

as in non-autoregressive (NAR) decoding frameworks [Joshi et al., 2020], where edges are scored568

and selected sequentially to form a valid tour.569

For the KP, NI actions involve adding or removing individual items from the current solution. In570

contrast, cNC policies apply node-level heatmaps to construct solutions directly in a single pass,571

where the selection probabilities are derived from node embeddings.572

In the JSSP, actions must respect the precedence and machine constraints that govern feasible573

schedules. For NI policies, actions correspond to local rescheduling moves, such as swapping the574

execution order of two operations on the same machine or shifting an operation earlier or later in575

time within its machine queue. These actions can be encoded as edges between operation nodes on576

the same machine, and thus, similar to TSP, edge embeddings and logits can be used to select the577

next local modification.578

In cNC, the construction process involves assigning operations to time slots in a way that respects579

both job precedence and machine availability. A natural approach is to define a greedy NAR decoding580

process, where the model outputs a heatmap over possible job-machine-time triplets. At each581

decoding step, the highest-scoring operation is scheduled next, progressively constructing a valid582

schedule until all operations are placed.583

B.3 Similarity Measures584

In the TSP, a convenient way to represent visited solutions is by storing the set of edges that belong585

to those tours, via a one-hot encoding in edge features. Regarding the similarity between solutions,586

permutation-based distance metrics could be used, such as Kendall Tau, or Cayley distance.587

In the KP, solutions are binary vectors indicating whether each item is included (1) or excluded (0)588

from the knapsack, and thus, can be represented as node features. The binary format of solutions589

is naturally suited to Hamming distance, which counts the number of differing bits between two590

solutions.591

For the JSSP, there are multiple alternatives: one is to encode solutions as a vector of operation start592

times, and compute similarity using Euclidean distance or mean absolute error between these vectors.593

Another option is to represent solutions as a sequence of operation-machine assignments and use594

sequence-based metrics such as Kendall Tau or edit distance to compare them.595

C Training Details of the Improvement Module596

This section details the training procedure for the NI model within the improvement module. The597

training process consists of multiple episodes, each involving a batch of randomly generated problem598

instances. For each instance in the batch, a set of agents A is initialized, each agent Ai starting with a599

candidate solution s0i and a centralized memoryM shared by the agents.600

Each episode proceeds through T optimization steps. In each step t, every agent proposes a modifi-601

cation to its current candidate solution based on the problem instance, its current solution, and the602

shared memory. After applying the proposed modification, rewards Rt
i are computed according to603

Equations 1 and 2, and the updated solutions are stored in the memory.604

At the end of each episode, the parameters of the NI model are updated using the REINFORCE605

algorithm [Williams, 1992], maximizing the expected cumulative reward across all agents over T606

steps. The objective can be formally defined as:607

J (θ) = Eπθ

 |A|∑
i=1

T−1∑
t=0

γtRt
i

 , (7)

where πθ denotes the joint policy of all agents, parameterized by θ, |A| is the number of agents or608

the population size, and γ is the discount factor that prioritizes immediate rewards over distant ones.609
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Algorithm 1 NI - Training Procedure

Input: Distribution of instances D, population size |A|, number of training episodes E, episode
length T , NI policy π with parameters θ
Training:
Initialize policy network πθ

for episode e = 1 to E do
I ← Sample a batch of M problem instances from D
for each instance m in the batch do

Initialize:
for each Agent i ∈ A do

s0i ← RandomInitialization()
end for
Initialize shared memoryM0 ← ∅
Main loop:
for t = 0 to T − 1 do

for each Agent i ∈ A do
xt
i ← (I, sti,Mt)

ati ∼ πθ(· | xt
i)

st+1
i ← ApplyAction

(
sti, a

t
i

)
Rt

i ← Robj + wrep ·Rrep

Mt+1 ← UpdateMemory(Mt, s
t+1
i )

end for
end for

end for
Policy Update:
b← 1

|A|
∑|A|

i=1

∑T
t=1 R

t
i {baseline}

At
i ←

(∑T−t
k=0 γ

k Rt+k
i

)
− b {advantage}

∆θ ← η
∑|A|

i=1

∑T−1
t=0 ∇θ log πθ(a

t
i | xt

i) ·At
i.

θ ← θ + ∆θ
end for
Output: Trained policy parameters θ

To reduce the variance of the gradient estimator, a baseline strategy is usually adopted. Specifically,610

the average reward across all agents within the episode is used as the baseline:611

b =
1

|A|

|A|∑
i=1

T−1∑
t=0

Rt
i. (8)

The advantage for each agent i at each step t is then computed as:612

At
i =

(
T−t−1∑
k=0

γkRt+k
i

)
− b. (9)

The policy parameters are updated using the REINFORCE gradient:613

∇θJ (θ) ≈
|A|∑
i=1

T−1∑
t=0

∇θ log πθ(a
t
i | xt

i) ·At
i. (10)

The complete training procedure is outlined in Algorithm 1. For clarity, we omit the batch size614

summation in the parameter update calculations within the algorithm.615

C.1 Training Hyperparameters616

Table 2 presents the training hyperparameters used. To promote generalization to different graph617

sizes, we vary the size of the generated instances across episodes. Specifically, the number of nodes618

for each instance is sampled uniformly in the range [50, 200].619
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Table 2: Used Training Hyperparameters.

Hyperparameter Value

Episodes 100k
Min Problem Size 50
Max Problem Size 200
Batch Size 128
Population Size 5
Episode Length T 3
γ (Discount) 0.95
Optimizer AdamW
Learning Rate η 5× 10−5

Betas (AdamW) (0.9, 0.95)
Weight Decay (AdamW) 0.1
Memory Type Marco-shared
Random Seed 42

D Conditioned Neural Constructive620

The conditioned Neural Constructive (cNC) offers significant advantages over training multiple621

independent models for varying exploration preferences. Instead of discretizing the preference space622

and training a separate model for each discrete value, cNC learns a continuous function conditioned623

on the exploration weight. This approach has several key benefits: (1) it requires training only a624

single model; and (2) it allows for fine-grained control over the exploration-exploitation balance by625

sampling any value within the continuous preference range.626

However, training a cNC requires careful consideration of the training process. In each training627

episode, a batch of random problem instances is initialized along with a set of diverse candidate628

solutions. These solutions are used as reference to encourage the generation of distinct and high-629

quality solutions. Additionally, a random exploration weight is sampled from the range [0, 1] in630

each episode, providing the conditioning signal for the network. This stochastic sampling of the631

exploration weight is essential for the cNC to learn a robust mapping between exploration preference632

and constructive behavior.633

The cNC policy is trained using the REINFORCE algorithm, following the same procedure as the NI634

policy described in Appendix C. The main distinction lies in the baseline computation: rather than635

aggregating rewards from multiple agents, the cNC training performs multiple rollouts (i.e., NAR636

decoding of solutions) for each instance, and uses the average reward across these rollouts as the637

baseline.638

The general training process is outlined in Algorithm 2. For training the cNC in this work, we639

used a batch of 64 instances with 500 nodes per episode, 10, 000 episodes, 20 considered solutions640

(|K| = 20), and 10 rollouts per instance (Nroll = 10).641

D.1 Sampling of the Exploration Weight during Training642

Initially, we experimented with uniform sampling of the exploration weight. However, as shown in643

Figure 4a, this approach failed to adequately cover the Pareto front. To address this, we employed a644

Beta distribution with parameters α = β = 0.2. This U-shaped distribution emphasizes the sampling645

of extreme exploration weights (close to 0 and 1), which proved crucial for the cNC to effectively646

learn the boundaries of the Pareto front (Figure 4b).647

Furthermore, we conducted a comparative study against a configuration using multiple independently648

trained networks. In this baseline, we discretized the exploration preference into 11 values (0.0, 0.1,649

..., 1.0) and trained a separate model for each. This required training 11 distinct networks. The results650

presented in Figure 4c demonstrate that the cNC is able to provide solutions that slightly dominate651

those obtained by independently trained networks.652
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Algorithm 2 cNC - Training Procedure

Input: Distribution of instances D, number of training episodes E, number of rollouts Nroll,
number of considered solutions |K|, cNC policy π with parameters θ, batch size B
Training:
Initialize policy network πθ

for episode e = 1 to E do
I ← Sample a batch of B problem instances from D
K ← Initialize |K| random solutions
ω ← Sample random exploration weight ∈ [0, 1]
for each instance i in the batch do

xi ← (I, K, ω) {Define input state}
li ← πθ(xi) {Compute logits}
pi ← Softmax(li) {Compute probabilities}
for r = 1 to Nroll do

sri ← Rollout
(
pi
)

{Sample a solution}
Ri

obj ← f(sri )

Ri
dist ← ComputeDistance(sri ,K)

Rr
i ← (1− ω) ·Ri

obj + ω ·Ri
dist

end for
end for
Policy Update:
bi ← 1

Nroll

∑Nroll
r=1 R

r
i {per-instance baseline}

Ar
i ← Rr

i − bi {advantage}
θ ← θ + η

∑B
i=1

∑Nroll
r=1∇θ

(
log πθ(s

r
i | xi)

)
Ar

i
end for
Output: Trained policy parameters θ

(a) Uniform sampling. (b) Beta distribution. (c) Beta dist. vs. Independent.

Figure 4: Bi-objective performance of different strategies. The plots show the objective value ratio
with respect to the best known value (y-axis), against the exploration reward, computed as the average
distance to the considered solutions (x-axis), for various exploration weights (colored points). Results
are obtained on 100 ER graphs with 100 nodes for the MC problem. (a) cNC trained with uniform
sampling of the exploration weight. (b) cNC trained with Beta distribution sampling (α = β = 0.2).
(c) Comparison between the Beta-trained cNC and multiple independently trained networks, each
optimized for a specific, discretized exploration weight.

D.2 Cooling Schedule653

Once trained the cNC, it permits to dynamically adjust the exploration weight throughout the opti-654

mization process. In the initial phases of the optimization process, a strong emphasis on exploration655

allows the algorithm to investigate a diverse set of solutions. As the process progresses, it becomes656

advantageous to gradually shift the focus towards exploitation. This transition can be seen as a657

cooling schedule, analogous to the temperature reduction in simulated annealing [Kirkpatrick et al.,658

1983].659

Equation 4 presents the general formula for the cooling schedule, which dynamically adjusts the660

weight assigned to exploration based on the budget left. We investigated several cooling strategies,661
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(a) Different cooling schedules. (b) Avg. obj. curves for ER700-800 (c) Avg obj. curves for RB800-1200

Figure 5: Different cooling schedules for the exploration weight and their performance in ER700-800
and RB800-1200 evaluation datasets for the MC.

Figure 6: Influence of the Patience Parameter (Npatience) on Optimization Performance. The plot
shows the evolution of the best objective value found during the optimization process for different
values of Npatience (100, 500, 1000, and 5000) averaged over 128 ER700-800 graphs for the Maximum
Cut problem.

modifying the cooling factor ϕ. We compare the linear cooling used in the paper (ϕ = 1), with two662

exponential schedules (ϕ = 2 and ϕ = 4), where the exponential decrease of the weight should663

allow for a faster reduction in exploration compared to linear cooling, and a constant weight (ω = 0)664

meaning that the policy only focuses on exploitation.665

Figure 5a visualizes the cooling curves for each proposed schedule. We evaluated their performance666

on two distinct MC datasets: ER700-800 (Figure 5b) and RB800-1200 (Figure 5c).667

Our results reveal a strong relationship between the optimal level of exploration and whether the668

evaluation data are drawn from the training distribution (ER) or from a different distribution (RB).669

For example, the strategy focused solely on exploitation (ω = 0) performs best on the in-distribution670

ER graphs but exhibits the worst performance on the out-of-distribution RB graphs. This trend671

extends to the other cooling schedules. Higher exploration rates lead to improved performance on the672

out-of-distribution RB graphs, while lower exploration rates (emphasizing exploitation) yield better673

results on the in-distribution ER graphs. These findings underscore the importance of exploration for674

generalization to unseen data.675

E Router Patience676

The patience parameter (Npatience) is crucial for the router’s ability to balance exploitation and677

exploration in agent behavior. It specifies the number of consecutive iterations in which an agent can678

fail to improve its solution before being redirected to the Exploration Module to restart the search.679

Selecting an appropriate Npatience involves a trade-off: a low value can cause premature exploration,680

potentially missing out on good solutions, while a high value can result in excessive computation681

within a local region of the search space without yielding significant improvements.682
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Algorithm 3 MALOTE Inference Procedure

1: Input: Instance to be solved I, trained NI and cNC policies, population size |A|, max steps Tmax, patience
threshold Npatience, initial exploration weight ωstart, cooling factor ϕ,

2: Initialize:
3: for each agent i ∈ A do
4: s0i ← RandomInitialization(I), ci ← 0 {Consecutive non-improving steps}
5: end for
6: M0 ← ∅ {Shared memory}, sbest ← ∅ {Stores the best solution found so far}
7: for t← 1 to Tmax do
8: for each agent i ∈ A do
9: if ci ≥ Npatience then

10: ω ← ωstart

(
1− t

Tmax

)
{Update exploration weight using cooling schedule}

11: Kt ← SelectSubset(Mt) {Select a subset of solutions from memory for exploration}
12: st+1

i ← πcNC(I,Kt, ω) {New solution via Exploration Module}
13: ci ← 0 {Reset counter}
14: else
15: st+1

i ← πNI(I, sti,Mt) {Improve solution applying a bit-flip}
16: if IsImproved(st+1

i , sti) then
17: ci ← 0 {Reset counter}
18: else
19: ci ← ci + 1 {Increase counter}
20: end if
21: end if
22: Mt+1 ← UpdateMemory(Mt, s

t+1
i ) {Update shared memory with new solution}

23: sbest ← SelectBetter(sbest, s
t+1
i ) {Update the best solution found}

24: end for
25: end for
26: Output: sbest

To determine suitable values for Npatience, we evaluated the performance of our method with several683

different patience settings: 100, 500, 1000, and 5000; in the ER700-800 graph dataset. Our findings684

indicate that a small patience value (e.g., Npatience = 100) hinders performance by prematurely685

interrupting the search. Conversely, a large patience value (e.g., Npatience = 5000) results in slow686

convergence, as agents persist in local search for too long. In this experiment, optimal performance687

was achieved with patience values between 500 and 1000, which yielded similar results. Based on688

these observations, setting the patience to the number of nodes in the graph instance serves as a689

simple yet effective rule of thumb. The results of this ablation study are presented in Figure 6.690

F Pseudocode for MALOTE Inference691

Algorithm 3 presents the inference procedure of MALOTE, as described in Section 4. Lines 2-8 detail692

the initialization of the agents, memory structures, and other key components. The main execution693

loop, spanning lines 9-27, governs the core interaction and learning process.694

Although the pseudo-code illustrates an inner loop that processes each agent sequentially, the actual695

implementation executes these iterations in parallel.696

G Neural Network Architecture697

In this section, we detail the neural network architecture employed in our methodology.698

Although the MALOTE framework is designed to be modular and compatible with various en-699

coder architectures, including Graph Neural Networks (GNNs) and transformer-based models that700

embed node and edge features into a latent space, we adopt the Graph Transformer (GT) archi-701

tecture [Dwivedi and Bresson, 2020] due to its strong empirical performance across a range of702

combinatorial optimization problems.703

GTs extend the standard transformer model [Vaswani et al., 2017] to operate directly on graph-704

structured data. Unlike traditional transformers, which are tailored for sequential inputs, GTs705
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incorporate structural information from the graph by integrating edge features, typically derived from706

the adjacency matrix, into their attention computations. In our implementation, GTs are combined707

with a Feed-Forward Neural Network (FFNN) decoder to parameterize both the NI and cNC policies.708

G.1 Initial Projection709

First, we extract the node and edge features as detailed in Appendix A for the problems addressed, and710

in Appendix B for additional problems. These features are then projected into a shared embedding711

space of dimension d to initialize the representations:712

h(0) = Wnodex+ bnode, (11)

e(0) = Wedgey + bedge, (12)

where x ∈ Rdnode and y ∈ Rdedge are the node and edge feature vectors, respectively; Wnode ∈ Rd×dnode713

and Wedge ∈ Rd×dedge are learnable weight matrices; bnode ∈ Rd and bedge ∈ Rd are bias vectors;714

and h(0) ∈ Rd and e(0) ∈ Rd denote the initial node and edge embeddings.715

G.2 Graph Transformer Layers716

The GT consists of L layers that iteratively refine the node embeddings. Each GT layer comprises717

two main components: a multi-head self-attention mechanism and a FFNN, both followed by718

normalization layers.719

Multi-Head Self-Attention. Within each GT layer, node embeddings are transformed into Query720

(Q), Key (K), and Value (V ) tensors for each attention head. Assuming a multi-head attention721

mechanism with h heads and per-head dimension dk = d
h , the transformations are defined as:722

Qi = W
(i)
Q h, Ki = W

(i)
K h, Vi = W

(i)
V h, (13)

for each head i = 1, . . . , h, where W(i)
Q ∈ Rdk×d, W(i)

K ∈ Rdk×d, and W
(i)
V ∈ Rdk×d are learnable723

projection matrices for each head.724

The multi-head attention mechanism within a GT layer is computed as follows:725

Attni(Qi,Ki, Vi) =

(
softmax

(
QiK

⊤
i√

dk
+Ei

)
·Ei

)
Vi, (14)

where Ei ∈ R|V |×|V | integrates edge features into the attention scores for head i. Specifically, Ei is726

computed by applying a learnable transformation to the edge embeddings:727

Ei = W(i)
e e(0), (15)

where W
(i)
e ∈ R|V |×|V | is a learnable weight matrix that maps edge embeddings to a weight matrix728

and a bias matrix to be multiplied and added to the attention scores, respectively.729

The outputs from all attention heads are concatenated and projected back to the original embedding730

dimension using a learnable output matrix:731

MultiHead(Q,K, V ) = Concat(Attn1, . . . ,Attnh)WO, (16)

where WO ∈ Rh·dk×d is a learnable weight matrix.732

Residual Connection and Normalization. The attention output is combined with the original node733

embeddings h via a residual connection, followed by a normalization function:734

h′ = Norm (h+ MultiHead(Q,K, V )) .

Feedforward Neural Network. Subsequent to the attention mechanism, each GT layer applies a735

FFNN:736

h′′ = FFNN(h′) = Norm (Act (W1h
′))W2, (17)

where W1 ∈ Rdff×d and W2 ∈ Rd×dff are learnable weight matrices, Act is the activation function,737

and Norm denotes a normalization function.738
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Final Residual Connection and Normalization. The output of the FFNN is then combined with739

the previous normalized embeddings h′ through another residual connection, followed by a final740

normalization step:741

h(l+1) = Norm (h′ + h′′) . (18)

G.3 Decoder742

The output from the final GT layer is subsequently processed by an additional FFNN to generate743

action logits:744

zi = Wdecoderh
(L)
i , (19)

where Wdecoder ∈ R1×d is a learnable weight matrix, that maps each node’s embedding to a single745

scalar value.746

These logits zi are then normalized using a softmax function over all nodes to produce a probability747

distribution:748

pi =
exp(zi)∑

j∈V exp(zj)
, (20)

where pi represents the probability of selecting node i for a given action.749

The interpretation of pi depends on the setting:750

• In the NI setting, pi denotes the probability of flipping the state of node i.751

• In the cNC setting, it corresponds to the probability of assigning node i to the first subset.752

If the action space is defined over edges rather than nodes, as mentioned in Appendix B for alternative753

problems, edge embeddings can be constructed by concatenating the final-layer embeddings of the754

two connected nodes:755

eij = [h
(L)
i || h(L)

j ], (21)

and passed through an edge-wise FFNN to obtain edge-level logits, and probabilities in the same756

manner.757

Table 3: Selected Model Hyperparameters

Model Hyperparameter Value

Number of layers (L) 3
Hidden dimension (d) 64
Number of heads (h) 8
FFNN hidden dimension 256
Activation function GeLU
Normalization LayerNorm
Dropout 0%

G.4 Hyperparameter Selection758

Table 3 lists the hyperparameters used in our model. These were determined through a comprehensive759

hyperparameter study, where different NI models were trained for 10,000 episodes on instances760

ranging from 20 to 40 nodes, and using a batch size of 1024. We explored various hyperparameter761

configurations and present the performance results on 100 instances with sizes of 20, 60, 100, and762

200 nodes in Table 4.763

H Implementation Details of Baseline Methods764

In this section, we provide a more detailed description of the methods used in the experiments.765
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Table 4: Performance under variations from the used hyperparameter setting. We report the average
objective value obtained when testing the NI model after the last epoch of training on ER graph
instances with 20, 60, 100 and 200 nodes for the MC problem.

Setting ER20 ER60 ER100 ER200

Used Config. 25.6 192.7 503.6 1896.9

Number of Layers
L = 2 25.6 192.4 502.1 1856.7
L = 4 25.6 192.6 503.2 1881.4

Hidden Dimension
d = 128 25.6 192.6 502.7 1885.6

Normalization
Instance 25.6 192.7 503.4 1894.6
RMS 25.6 192.6 503.2 1892.3

Dropout
Dropout = 20% 25.6 192.7 503.2 1887.6

Maximum Cut. For the MC problem, we used the methods implemented in the Max Cut Bench-766

mark [Nath and Kuhnle, 2024], modifying them to incorporate a time limit as a stopping criterion.767

Specifically, we employed the GUROBI exact solver [Gurobi Optimization, LLC, 2023] which768

is not able to obtain optimal solutions in the given budget, but provides an approximate solution.769

We also used constructive heuristics such as Forward Greedy, which starts with an empty solution770

and iteratively adds the vertex that provides the largest gain in the objective value. We applied771

metaheuristic techniques including Tabu Search (TS) [Glover, 1990], which maintains a tabu list to772

avoid revisiting recently explored solutions. The benchmark also includes learning-based methods,773

including S2V-DQN [Khalil et al., 2017], a NC method guided by a GNN; ECO-DQN [Barrett774

et al., 2020], a Neural Improvement variant of S2V-DQN; FlowNet [Zhang et al., 2023], a work that775

samples from the solution space with Generative Flow Networks; and ANYCSP [Tönshoff et al.,776

2023], a GNN-based search method for any constraint satisfaction problem.777

Additionally, we integrated a Genetic Algorithm (GA) [Kramer and Kramer, 2017], a population-778

based metaheuristic that evolves solutions through selection, crossover, and mutation operations;779

Particle Swarm Optimization (PSO) [Kennedy and Eberhart, 1995], a swarm-based optimization780

technique where a population of candidate solutions, called particles, moves through the solution781

space guided by individual and collective experiences; BURER [Burer et al., 2002], a specialized782

algorithm for MC that leverages semidefinite programming relaxations to approximate solutions;783

and MARCO [Garmendia et al., 2024], a memory-based NCO method that uses a shared memory to784

guide the search to unvisited solutions.785

Maximum Independent Set We reused several methods also for MIS. We employed the GUROBI786

exact solver, a greedy constructive heuristic that iteratively adds the node maximizing the gain while787

ensuring feasibility to the MIS constraints. We also implemented a Genetic Algorithm, a PSO, and788

used the MIS implementations of FlowNet and MARCO.789

Apart from these benchmark methods, we included KAMIS [Lamm et al., 2016], an evolutionary ap-790

proach that combines graph kernelization, local search, and graph partitioning techniques to solve the791

MIS problem. Furthermore, we integrated several learning-based methods: DGL [Böther et al., 2021]792

and INTEL [Li et al., 2018], which combine a policy learnt by supervised learning with tree search;793

LwD [Ahn et al., 2020], a scalable reinforcement learning framework that adaptively defers element-794

wise decisions during solution generation to simplify hard decisions; and DiffUCO [Sanokowski et al.,795

2024], a diffusion model using unsupervised learning to approximate intractable discrete distributions796

without requiring training data.797
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I Advantage of Centralized Training for Memory-Based Methods798

The NI model (from the improvement module) in our approach differs from MARCO [Garmendia799

et al., 2024] in its training paradigm. While MARCO employs a decentralized training scheme in800

which each search thread maintains a private memory, we utilize a centralized training framework801

with a shared memory accessible to all agents.802

We hypothesize that training with a shared memory increases the complexity of the learning task803

for the NI model. The model must learn to navigate a more intricate decision-making landscape,804

avoiding redundant actions not only within its own search trajectory, but also across the trajectories805

of all other agents sharing the memory.806

Table 5: Performance Comparison between decentralized (d) and centralized (c) training in MARCO.

Method MC-objective ↑ MC-diversity ↑ MIS-objective ↑ MIS-diversity ↑

MARCO-d 24205.97 0.54 43.78 0.51
MARCO-c 24221.72 0.59 44.48 0.57

To isolate the impact of the centralized memory architecture on performance, we conducted a807

controlled experiment. We trained a MARCO model using the original training hyperparameters808

reported in [Garmendia et al., 2024], but modified the training process to incorporate a centralized,809

shared memory, mirroring our approach. We then evaluated both the original decentralized MARCO810

model (MARCO-d) and this centralized MARCO variant (MARCO-c) on the ER700-800 dataset for811

both the MC and MIS problems.812

Table 5 presents the results, comparing the average objective value and a measure of solution diversity.813

Diversity is quantified using the average pairwise Hamming distance between the proposed solutions.814

The results demonstrate that the centralized variant of MARCO, trained with the approach presented815

in this paper, achieves significantly improved performance in terms of both the objective value and816

the diversity of solutions, confirming that centralized memory is a key factor driving the performance817

gains observed in our approach.818

J MALOTE as a Neural Population-Based Metaheuristic819

MALOTE shares several conceptual similarities with classical population-based metaheuristics such820

as Genetic Algorithms (GA) and Particle Swarm Optimization (PSO). Like these methods, MALOTE821

maintains a population of candidate solutions and iteratively improves them through interactions and822

information sharing. In GA, this occurs via selection, crossover, and mutation; in PSO, particles823

update their positions based on personal and global bests; in MALOTE, the population is updated824

through neural policies conditioned on a centralized memory that captures the collective search825

history. The key difference lies in how the update mechanisms are implemented: while GA and826

PSO use hand-designed heuristics, MALOTE learns its update strategy end-to-end via reinforcement827

learning, enabling adaptation to problem-specific structures. Additionally, MALOTE leverages neural828

networks to encode graph-structured inputs and guide exploration, offering a more expressive and829

learnable framework compared to the fixed dynamics of classical metaheuristics.830

To highlight these differences in practice, we compare the anytime performance of MALOTE with831

that of GA and PSO in Figure 7. This comparison evaluates how solution quality evolves over832

time under equivalent computational budgets. The results demonstrate that MALOTE outperforms833

classical metaheuristics having faster convergence, and converging in a higher quality solutions.834

These findings support the view that data-driven learning can outperform traditional.835

J.1 Ablation Study836

To better understand the contribution of key components in the MALOTE architecture, we conduct an837

ablation study focusing on the Exploration Module and the conditioned Neural Constructive (cNC)838

policy. Specifically, we evaluate two simplified variants of MALOTE: (1) one without the Exploration839

Module (denoted as MALOTE - {EM}), and (2) one where the Exploration Module is retained, but840
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(a) MC - ER 700-800 (b) MIS - ER 700-800

Figure 7: Anytime performance of MALOTE and population-based metaheuristics GA and PSO on
MC and MIS problems. Each subplot shows the evolution of the best objective value found during
the optimization process. Results are shown for both ER700-800 and RB800-1200 graph datasets.

the cNC policy is replaced with a random initialization strategy (denoted as MALOTE - {cNC}). We841

compare these configurations against the full MALOTE model, limiting each run to a fixed budget of842

40|V | inference steps, where |V | is the number of nodes in the instance.843

Table 6 reports the final objective values obtained, their ratios relative to the best baselines shown in844

Table 1, and the average runtime required to complete 40|V | steps. The results confirm that both the845

Exploration Module and the cNC policy are critical for achieving strong optimization performance.846

Furthermore, Figure 8 illustrates the anytime performance curves of MALOTE and its ablated847

variants. The results highlight the importance of the Exploration Module in continuously discovering848

high-quality solutions, and show that incorporating the cNC policy leads to better outcomes than849

relying on random sampling when the search begins to stagnate.850

Table 6: Performance comparison on MC and MIS tasks for different ablation settings. The best
overall results are highlighted in bold.

ER700-800 RB800-1200

Method Type Objective ↑ Ratio ↑ Time ↓ Objective ↑ Ratio ↑ Time ↓

M
C

MALOTE - {EM} RL / NI 24230.26 1.000 1.06m 31765.68 1.000 2.52m
MALOTE - {cNC} RL / NI 24237.23 1.000 3.46m 31767.60 1.000 6.10m
MALOTE RL / NI + cNC 24240.16 1.000 7.14m 31768.03 1.000 9.71m

M
IS

MALOTE - {EM} RL / NI 45.12 1.003 1.00m 40.40 0.936 2.10m
MALOTE - {cNC} RL / NI 45.29 1.006 5.31m 40.75 0.944 8.37m
MALOTE RL / NI + cNC 45.44 1.010 5.82m 41.04 0.951 8.94m

(a) MC - ER 700-800 (b) MC - RB 800-1200 (c) MIS - ER 700-800 (d) MIS - RB 800-1200

Figure 8: Anytime performance of MALOTE and ablations on MC and MIS problems. Each subplot
shows the evolution of the best objective value found during the optimization process. Results are
shown for both ER700-800 and RB800-1200 graph datasets.
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Question: Do the main claims made in the abstract and introduction accurately reflect the853

paper’s contributions and scope?854

Answer: [Yes]855

Justification: The claims made are based on the experimental results.856

Guidelines:857

• The answer NA means that the abstract and introduction do not include the claims858

made in the paper.859

• The abstract and/or introduction should clearly state the claims made, including the860

contributions made in the paper and important assumptions and limitations. A No or861

NA answer to this question will not be perceived well by the reviewers.862

• The claims made should match theoretical and experimental results, and reflect how863

much the results can be expected to generalize to other settings.864

• It is fine to include aspirational goals as motivation as long as it is clear that these goals865

are not attained by the paper.866

2. Limitations867

Question: Does the paper discuss the limitations of the work performed by the authors?868

Answer: [Yes]869

Justification: Limitations and future work are discussed.870

Guidelines:871

• The answer NA means that the paper has no limitation while the answer No means that872

the paper has limitations, but those are not discussed in the paper.873

• The authors are encouraged to create a separate "Limitations" section in their paper.874

• The paper should point out any strong assumptions and how robust the results are to875

violations of these assumptions (e.g., independence assumptions, noiseless settings,876

model well-specification, asymptotic approximations only holding locally). The authors877

should reflect on how these assumptions might be violated in practice and what the878

implications would be.879

• The authors should reflect on the scope of the claims made, e.g., if the approach was880

only tested on a few datasets or with a few runs. In general, empirical results often881

depend on implicit assumptions, which should be articulated.882

• The authors should reflect on the factors that influence the performance of the approach.883

For example, a facial recognition algorithm may perform poorly when image resolution884

is low or images are taken in low lighting. Or a speech-to-text system might not be885

used reliably to provide closed captions for online lectures because it fails to handle886

technical jargon.887

• The authors should discuss the computational efficiency of the proposed algorithms888

and how they scale with dataset size.889

• If applicable, the authors should discuss possible limitations of their approach to890

address problems of privacy and fairness.891

• While the authors might fear that complete honesty about limitations might be used by892

reviewers as grounds for rejection, a worse outcome might be that reviewers discover893

limitations that aren’t acknowledged in the paper. The authors should use their best894

judgment and recognize that individual actions in favor of transparency play an impor-895

tant role in developing norms that preserve the integrity of the community. Reviewers896

will be specifically instructed to not penalize honesty concerning limitations.897

3. Theory assumptions and proofs898

Question: For each theoretical result, does the paper provide the full set of assumptions and899

a complete (and correct) proof?900

Answer: [NA]901

Justification: The paper does not include theoretical results.902

Guidelines:903

• The answer NA means that the paper does not include theoretical results.904
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• All the theorems, formulas, and proofs in the paper should be numbered and cross-905

referenced.906

• All assumptions should be clearly stated or referenced in the statement of any theorems.907

• The proofs can either appear in the main paper or the supplemental material, but if908

they appear in the supplemental material, the authors are encouraged to provide a short909

proof sketch to provide intuition.910

• Inversely, any informal proof provided in the core of the paper should be complemented911

by formal proofs provided in appendix or supplemental material.912

• Theorems and Lemmas that the proof relies upon should be properly referenced.913

4. Experimental result reproducibility914

Question: Does the paper fully disclose all the information needed to reproduce the main ex-915

perimental results of the paper to the extent that it affects the main claims and/or conclusions916

of the paper (regardless of whether the code and data are provided or not)?917

Answer: [Yes]918

Justification: We are open sourcing the code to reproduce the experimental results.919

Guidelines:920

• The answer NA means that the paper does not include experiments.921

• If the paper includes experiments, a No answer to this question will not be perceived922

well by the reviewers: Making the paper reproducible is important, regardless of923

whether the code and data are provided or not.924

• If the contribution is a dataset and/or model, the authors should describe the steps taken925

to make their results reproducible or verifiable.926

• Depending on the contribution, reproducibility can be accomplished in various ways.927

For example, if the contribution is a novel architecture, describing the architecture fully928

might suffice, or if the contribution is a specific model and empirical evaluation, it may929

be necessary to either make it possible for others to replicate the model with the same930

dataset, or provide access to the model. In general. releasing code and data is often931

one good way to accomplish this, but reproducibility can also be provided via detailed932

instructions for how to replicate the results, access to a hosted model (e.g., in the case933

of a large language model), releasing of a model checkpoint, or other means that are934

appropriate to the research performed.935

• While NeurIPS does not require releasing code, the conference does require all submis-936

sions to provide some reasonable avenue for reproducibility, which may depend on the937

nature of the contribution. For example938

(a) If the contribution is primarily a new algorithm, the paper should make it clear how939

to reproduce that algorithm.940

(b) If the contribution is primarily a new model architecture, the paper should describe941

the architecture clearly and fully.942

(c) If the contribution is a new model (e.g., a large language model), then there should943

either be a way to access this model for reproducing the results or a way to reproduce944

the model (e.g., with an open-source dataset or instructions for how to construct945

the dataset).946

(d) We recognize that reproducibility may be tricky in some cases, in which case947

authors are welcome to describe the particular way they provide for reproducibility.948

In the case of closed-source models, it may be that access to the model is limited in949

some way (e.g., to registered users), but it should be possible for other researchers950

to have some path to reproducing or verifying the results.951

5. Open access to data and code952

Question: Does the paper provide open access to the data and code, with sufficient instruc-953

tions to faithfully reproduce the main experimental results, as described in supplemental954

material?955

Answer: [Yes]956

Justification: We are making public the source code of MALOTE.957

Guidelines:958
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• The answer NA means that paper does not include experiments requiring code.959

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/960

public/guides/CodeSubmissionPolicy) for more details.961

• While we encourage the release of code and data, we understand that this might not be962

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not963

including code, unless this is central to the contribution (e.g., for a new open-source964

benchmark).965

• The instructions should contain the exact command and environment needed to run to966

reproduce the results. See the NeurIPS code and data submission guidelines (https:967

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.968

• The authors should provide instructions on data access and preparation, including how969

to access the raw data, preprocessed data, intermediate data, and generated data, etc.970

• The authors should provide scripts to reproduce all experimental results for the new971

proposed method and baselines. If only a subset of experiments are reproducible, they972

should state which ones are omitted from the script and why.973

• At submission time, to preserve anonymity, the authors should release anonymized974

versions (if applicable).975

• Providing as much information as possible in supplemental material (appended to the976

paper) is recommended, but including URLs to data and code is permitted.977

6. Experimental setting/details978

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-979

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the980

results?981

Answer: [Yes]982

Justification: We carefully detail all the parameters in the appendix.983

Guidelines:984

• The answer NA means that the paper does not include experiments.985

• The experimental setting should be presented in the core of the paper to a level of detail986

that is necessary to appreciate the results and make sense of them.987

• The full details can be provided either with the code, in appendix, or as supplemental988

material.989

7. Experiment statistical significance990

Question: Does the paper report error bars suitably and correctly defined or other appropriate991

information about the statistical significance of the experiments?992

Answer: [Yes]993

Justification: We provide information regarding the intra-instance variability of non-994

deterministic methods, and inter-instance variability of all the methods.995

Guidelines:996

• The answer NA means that the paper does not include experiments.997

• The authors should answer "Yes" if the results are accompanied by error bars, confi-998

dence intervals, or statistical significance tests, at least for the experiments that support999

the main claims of the paper.1000

• The factors of variability that the error bars are capturing should be clearly stated (for1001

example, train/test split, initialization, random drawing of some parameter, or overall1002

run with given experimental conditions).1003

• The method for calculating the error bars should be explained (closed form formula,1004

call to a library function, bootstrap, etc.)1005

• The assumptions made should be given (e.g., Normally distributed errors).1006

• It should be clear whether the error bar is the standard deviation or the standard error1007

of the mean.1008

• It is OK to report 1-sigma error bars, but one should state it. The authors should1009

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis1010

of Normality of errors is not verified.1011
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• For asymmetric distributions, the authors should be careful not to show in tables or1012

figures symmetric error bars that would yield results that are out of range (e.g. negative1013

error rates).1014

• If error bars are reported in tables or plots, The authors should explain in the text how1015

they were calculated and reference the corresponding figures or tables in the text.1016

8. Experiments compute resources1017

Question: For each experiment, does the paper provide sufficient information on the com-1018

puter resources (type of compute workers, memory, time of execution) needed to reproduce1019

the experiments?1020

Answer: [Yes]1021

Justification: We provide the hardware and execution time necessary to execute the experi-1022

ments.1023

Guidelines:1024

• The answer NA means that the paper does not include experiments.1025

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,1026

or cloud provider, including relevant memory and storage.1027

• The paper should provide the amount of compute required for each of the individual1028

experimental runs as well as estimate the total compute.1029

• The paper should disclose whether the full research project required more compute1030

than the experiments reported in the paper (e.g., preliminary or failed experiments that1031

didn’t make it into the paper).1032

9. Code of ethics1033

Question: Does the research conducted in the paper conform, in every respect, with the1034

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?1035

Answer: [Yes]1036

Justification: The NeurIPS Code of Ethics has been reviewed, and the paper conforms it in1037

every aspect.1038

Guidelines:1039

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.1040

• If the authors answer No, they should explain the special circumstances that require a1041

deviation from the Code of Ethics.1042

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-1043

eration due to laws or regulations in their jurisdiction).1044

10. Broader impacts1045

Question: Does the paper discuss both potential positive societal impacts and negative1046

societal impacts of the work performed?1047

Answer: [NA]1048

Justification: There is no societal impact of the work performed.1049

Guidelines:1050

• The answer NA means that there is no societal impact of the work performed.1051

• If the authors answer NA or No, they should explain why their work has no societal1052

impact or why the paper does not address societal impact.1053

• Examples of negative societal impacts include potential malicious or unintended uses1054

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations1055

(e.g., deployment of technologies that could make decisions that unfairly impact specific1056

groups), privacy considerations, and security considerations.1057

• The conference expects that many papers will be foundational research and not tied1058

to particular applications, let alone deployments. However, if there is a direct path to1059

any negative applications, the authors should point it out. For example, it is legitimate1060

to point out that an improvement in the quality of generative models could be used to1061

generate deepfakes for disinformation. On the other hand, it is not needed to point out1062

that a generic algorithm for optimizing neural networks could enable people to train1063

models that generate Deepfakes faster.1064
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• The authors should consider possible harms that could arise when the technology is1065

being used as intended and functioning correctly, harms that could arise when the1066

technology is being used as intended but gives incorrect results, and harms following1067

from (intentional or unintentional) misuse of the technology.1068

• If there are negative societal impacts, the authors could also discuss possible mitigation1069

strategies (e.g., gated release of models, providing defenses in addition to attacks,1070

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from1071

feedback over time, improving the efficiency and accessibility of ML).1072

11. Safeguards1073

Question: Does the paper describe safeguards that have been put in place for responsible1074

release of data or models that have a high risk for misuse (e.g., pretrained language models,1075

image generators, or scraped datasets)?1076

Answer: [NA]1077

Justification: The paper poses no such risks.1078

Guidelines:1079

• The answer NA means that the paper poses no such risks.1080

• Released models that have a high risk for misuse or dual-use should be released with1081

necessary safeguards to allow for controlled use of the model, for example by requiring1082

that users adhere to usage guidelines or restrictions to access the model or implementing1083

safety filters.1084

• Datasets that have been scraped from the Internet could pose safety risks. The authors1085

should describe how they avoided releasing unsafe images.1086

• We recognize that providing effective safeguards is challenging, and many papers do1087

not require this, but we encourage authors to take this into account and make a best1088

faith effort.1089

12. Licenses for existing assets1090

Question: Are the creators or original owners of assets (e.g., code, data, models), used in1091

the paper, properly credited and are the license and terms of use explicitly mentioned and1092

properly respected?1093

Answer: [NA]1094

Justification: The paper does not use existing assets from other authors.1095

Guidelines:1096

• The answer NA means that the paper does not use existing assets.1097

• The authors should cite the original paper that produced the code package or dataset.1098

• The authors should state which version of the asset is used and, if possible, include a1099

URL.1100

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.1101

• For scraped data from a particular source (e.g., website), the copyright and terms of1102

service of that source should be provided.1103

• If assets are released, the license, copyright information, and terms of use in the1104

package should be provided. For popular datasets, paperswithcode.com/datasets1105

has curated licenses for some datasets. Their licensing guide can help determine the1106

license of a dataset.1107

• For existing datasets that are re-packaged, both the original license and the license of1108

the derived asset (if it has changed) should be provided.1109

• If this information is not available online, the authors are encouraged to reach out to1110

the asset’s creators.1111

13. New assets1112

Question: Are new assets introduced in the paper well documented and is the documentation1113

provided alongside the assets?1114

Answer: [NA]1115

Justification: The paper does not release new assets.1116

30

paperswithcode.com/datasets


Guidelines:1117

• The answer NA means that the paper does not release new assets.1118

• Researchers should communicate the details of the dataset/code/model as part of their1119

submissions via structured templates. This includes details about training, license,1120

limitations, etc.1121

• The paper should discuss whether and how consent was obtained from people whose1122

asset is used.1123

• At submission time, remember to anonymize your assets (if applicable). You can either1124

create an anonymized URL or include an anonymized zip file.1125

14. Crowdsourcing and research with human subjects1126

Question: For crowdsourcing experiments and research with human subjects, does the paper1127

include the full text of instructions given to participants and screenshots, if applicable, as1128

well as details about compensation (if any)?1129

Answer: [NA]1130

Justification: The paper does not involve crowdsourcing nor research with human subjects.1131

Guidelines:1132

• The answer NA means that the paper does not involve crowdsourcing nor research with1133

human subjects.1134

• Including this information in the supplemental material is fine, but if the main contribu-1135

tion of the paper involves human subjects, then as much detail as possible should be1136

included in the main paper.1137

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1138

or other labor should be paid at least the minimum wage in the country of the data1139

collector.1140

15. Institutional review board (IRB) approvals or equivalent for research with human1141

subjects1142

Question: Does the paper describe potential risks incurred by study participants, whether1143

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1144

approvals (or an equivalent approval/review based on the requirements of your country or1145

institution) were obtained?1146

Answer: [NA]1147

Justification: The paper does not involve crowdsourcing nor research with human subjects.1148

Guidelines:1149

• The answer NA means that the paper does not involve crowdsourcing nor research with1150

human subjects.1151

• Depending on the country in which research is conducted, IRB approval (or equivalent)1152

may be required for any human subjects research. If you obtained IRB approval, you1153

should clearly state this in the paper.1154

• We recognize that the procedures for this may vary significantly between institutions1155

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1156

guidelines for their institution.1157

• For initial submissions, do not include any information that would break anonymity (if1158

applicable), such as the institution conducting the review.1159

16. Declaration of LLM usage1160

Question: Does the paper describe the usage of LLMs if it is an important, original, or1161

non-standard component of the core methods in this research? Note that if the LLM is used1162

only for writing, editing, or formatting purposes and does not impact the core methodology,1163

scientific rigorousness, or originality of the research, declaration is not required.1164

Answer: [NA]1165

Justification: The research does not involve LLMs1166

Guidelines:1167
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• The answer NA means that the core method development in this research does not1168

involve LLMs as any important, original, or non-standard components.1169

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)1170

for what should or should not be described.1171
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