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Abstract

To efficiently solve optimization problems, a wide variety of algorithms have1

been developed, each designed to perform well under specific problem structures2

or domains. However, due to the no-free-lunch theorem, no single algorithm3

consistently outperforms others across all instances. This raises a fundamental4

question: how can we automatically construct algorithms tailored to the given5

problem? Inspired by LEGO-style modularity, we propose LEGO, a general6

framework for adaptive algorithm design via pipeline component selection. Using7

Mixed Integer Linear Programming (MILP) as a prototype, we construct solving8

pipelines by selecting and configuring components and hyperparameter within9

the Predict-and-Search paradigm. To ensure adaptability across varying data10

scales, LEGO can self-adaptively generate synthetic datasets of different sizes,11

enabling robust configuration even with limited data. It leverages large language12

models (LLMs) to evaluate and guidedly optimize candidate configurations, using a13

hybrid metric that combines classical performance indicators with LLM-informed14

assessments. High-quality pipelines are selected through hypervolume-based15

ranking and further refined via performance transfer on synthetic data to improve16

scalability. Experiments on four benchmark MILP tasks demonstrate that the17

proposed evaluation framework effectively identifies high-performing strategies and18

hyperparameter configurations, leading to algorithms that are both more efficient19

and more effective, highlighting LEGO as a generalized framework for component20

and hyperparameter selection in MILP solving frameworks, with potential for21

extension to broader algorithm design.22

1 Introduction23

Designing efficient algorithms for solving hard optimization problems is a core challenge across24

scientific and engineering domains. Over the years, a wide variety of algorithms have been proposed,25

each tailored to specific problem structures or domains [1, 2, 3]. However, the no-free-lunch theorem26

implies that no single algorithm can consistently outperform all others across the full spectrum of27

problem instances [4]. This raises a fundamental question: how can we automatically construct28

algorithms that are tailored to a given problem?29

In this paper, we address this question by proposing LEGO, a general framework for adaptive30

algorithm design via modular pipeline construction and optimization. Inspired by the flexibility of31

LEGO-style block assembly, LEGO treats algorithm design as a combinatorial construction prob-32

lem—selecting and configuring components and hyperparameters within a parameterized framework.33

While the core ideas are broadly applicable, we instantiate and validate LEGO in the domain of34

Mixed Integer Linear Programming (MILP), a widely adopted modeling paradigm for combinatorial35

optimization tasks such as routing [5], scheduling [6], and supply chain optimization [7].36
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Figure 1: Core research question: Given a problem distribution, how can we construct a solving
framework tailored to it? LEGO automatically assembles and tunes a solving pipeline based on
training data, and transfers it to larger test instances.

To ground our investigation, we build upon the Predict-and-Search (P&S) paradigm [8, 9], which37

structures MILP solvers into modular stages such as graph embedding, neural prediction, solution38

repair, and heuristic search. Existing P&S-based frameworks often commit to fixed designs and39

fixed-size data configurations, limiting their adaptability. In contrast, LEGO decomposes the P&S40

architecture into interchangeable components and systematically explores the space of configurations,41

enabling automated construction of solving pipelines tailored to the task at hand.42

A key challenge in this process is how to evaluate and select from a large pool of candidate solver con-43

figurations. To this end, LEGO introduces an LLM-enhanced performance evaluation mechanism,44

which combines classical indicators (e.g., objective gap, runtime) with LLM-informed metrics to45

assess solving behavior in a more holistic and task-aware way. These evaluations are then aggregated46

using a hypervolume-based component selection strategy to identify high-quality solver pipelines47

under multiple objectives. Furthermore, LEGO supports generalization across problem scales. Even48

when only small-scale training data are available, LEGO leverages a scalable data generation49

module to synthesize large-scale instances with similar structure, enabling robust size-transferable50

parameter tuning. This ensures that the selected pipelines can be effectively adapted to larger51

and more complex problems, even under limited training dataset. A demo of LEGO is available at52

https://anonymous.4open.science/r/LEGO-B36D, and the full codebase will be released after53

the review process.54

Our contributions are summarized as follows:55

• Scale-aware adaptive framework construction. LEGO introduces a flexible mechanism56

to generate synthetic instances of arbitrary scale with high structural similarity, enabling57

algorithm configuration even under data-scarce or size-mismatched scenarios.58

• A unified LLM-guided optimization framework. We propose three key techniques to59

guide the construction of solving pipelines: (1) LLM-enhanced Performance Evaluation,60

which combines classical metrics with LLM-informed assessments; (2) Hypervolume-61

guided Component Selection, which enables robust multi-objective ranking; and (3)62

Size-transferable Parameter Tuning, which refines pipeline performance across scales.63

• Empirical validation on MILP benchmarks. We validate LEGO on four widely used64

MILP benchmarks (MIS, MVC, SC, MKS). Results show that LEGO consistently discovers65

high-performing solver frameworks, outperforming both classical solvers (e.g., Gurobi,66

SCIP) and ML-based baselines (e.g., Light-MILPopt).67

2 Related Work68

2.1 Automatically Algorithm Design69

Automatically Algorithm Design (AAD) seeks to construct or adapt algorithms to specific problem70

distributions, fundamentally motivated by the "no-free-lunch" theorem, which states that no single71

algorithm excels on all problems. Classical AAD paradigms include Algorithm Configuration (AC)72

[10, 11], which optimizes hyperparameters for a fixed algorithm (e.g., ParamILS, LEAPSAND-73

BOUNDS), and Algorithm Selection (AS) [12], which chooses the most suitable algorithm from74

a predefined portfolio based on instance features. These approaches are often formalized under75
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the Meta-Black-Box Optimization (MetaBBO) framework [13], where meta-level learning drives76

algorithmic adaptation.77

While effective in many settings, these methods typically treat algorithms as atomic units, limiting78

flexibility and reusability [14]. Recent trends move toward more granular, component-based AAD79

[15], where algorithms are assembled from interchangeable functional units. This modular design80

enables finer control and potentially richer adaptation. However, challenges remain: most existing81

systems struggle with generalization across problem scales[16], as configurations optimized on one82

size often degrade on others. Moreover, managing inter-component dependencies and avoiding83

performance bottlenecks in dynamic or large-scale settings remains a significant open problem.84

2.2 Mixed Integer Linear Programs85

Mixed Integer Linear Programs (MILPs) are a fundamental class of combinatorial optimization86

problems, defined by a linear objective function with linear constraints, where some variables are87

restricted to take integer values [17]. The general form of an MILP is given by:88

min
x

cTx s.t. Ax ≤ b, l ≤ x ≤ u, xi ∈ Z for i ∈ I, (1)

where x ∈ Rn denotes the decision variables, c ∈ Rn the objective coefficients, A ∈ Rm×n and89

b ∈ Rm define the linear constraints, and l, u ∈ Rn represent variable bounds. The index set90

I ⊆ {1, . . . , n} indicates the subset of variables that must take integer values.91

Solving MILPs is NP-hard in general [18], and exact methods such as branch-and-bound, branch-92

and-cut, and cutting plane techniques remain the backbone of modern solvers [17]. Despite the93

success of commercial tools like Gurobi and open-source solvers like SCIP, large-scale or real-time94

MILPs often remain computationally intractable. Recent efforts have explored hybrid approaches,95

combining classical methods with learning-based components to improve scalability and adaptability96

[19], giving rise to modular frameworks such as the Predict-and-Search paradigm.97

2.3 Predict-and-Search98

The Predict-and-Search (P&S) paradigm [8, 9] offers a flexible framework that integrates learning-99

based modules into traditional optimization solvers by structuring them into distinct stages—typically100

involving a prediction phase followed by a search phase. This modular decomposition facilitates the101

injection of data-driven components to tailor solver behavior. However, both the prediction and search102

stages admit a wide range of possible designs—e.g., different neural architectures, scoring heuristics,103

or branching rules—leading to a large combinatorial space of solver configurations. Moreover, the104

performance of a given configuration often varies significantly across problem scales or distributions.105

These factors highlight the need for automatic algorithm design methods that can adaptively select and106

compose solver components, while ensuring robustness and generalization across diverse instances.107

3 Method108

We propose LEGO, a general framework for adaptive algorithm design within a fixed problem109

domain. LEGO automatically constructs high-performance algorithms tailored to a specific class of110

optimization problems by assembling solving pipelines from modular components and optimizing111

them via LLM-guided evaluation and search. To support adaptation across instance scales, LEGO112

integrates a synthetic instance generator that enables effective pipeline tuning even with limited113

training data.114

As shown in Figure 2, LEGO consists of two main modules. The upper module—LLM-based115

Evaluation and Guided Optimization—serves as the general optimization engine, combining116

hybrid metric evaluation with multi-objective search to guide pipeline construction. To demonstrate117

the framework’s effectiveness, we instantiate LEGO for Mixed Integer Linear Programming (MILP),118

building a Component Library based on the Predict-and-Search (P&S) paradigm. This library119

includes interchangeable components such as graph embeddings, neural predictors, repair heuristics,120

and search strategies. LEGO composes and tunes these components to construct scalable and adaptive121

MILP solvers.122
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Figure 2: Overview of the proposed LEGO framework. Solving pipelines are optimized via
LLM-based Evaluation and Guided Optimization, and assembled from the modular Component
Library following the Predict-and-Search paradigm. Optional blue modules (e.g., the Scalable MILP
generator) support adaptation to large-scale instances when training data is limited.

3.1 LLM-based Evaluation and Self-Optimization123

To evaluate and optimize component combinations within LEGO, we design a unified framework124

that integrates multi-dimensional performance metrics, including both classical solver indicators125

and task-specific criteria automatically generated by large language models (LLMs). These LLM-126

enhanced performance evaluations enable context-aware, goal-aligned assessment of solver behavior.127

To compare diverse configurations, we adopt a hypervolume-based selection strategy that jointly128

considers multiple objectives. To reduce evaluation cost, candidate pipelines are first assessed on129

small-scale instances, then adapted to larger problems through size-transferable parameter tuning,130

enabling efficient self-optimization with generalization across instance scales.131

3.1.1 LLM-enhanced Performance Evaluation132

To comprehensively evaluate pipelines constructed from the LEGO component library, we adopt a133

hybrid metric framework that combines classical human-designed indicators with task-aware criteria134

generated by large language models (LLMs). Specifically, we define a set of seven evaluation metrics135

that capture both solution quality and search dynamics over time.136

We first construct four classical metrics based on oracle-level performance. For each training instance,137

we run a strong solver for a long time to obtain a high-quality upper bound x∗, and evaluate pipelines138

by: (1) the initial solution gap to x∗, (2) the final solution gap to x∗, (3) the efficiency rate, defined as139

the fraction of instances with final gap ≤ 10%, and (4) the time to reach the first valid solution (gap ≤140

10%) and the first high-quality solution (gap ≤ 1%). To complement these, we employ GPT-4o [20]141

to generate candidate evaluation criteria from solver trajectories. After filtering and human validation,142

we retain three additional metrics: (5) the solution gap at 20% of the time budget, (6) the gap at 60%143

of the time budget, and (7) the time-integrated solution gap over the full horizon (i.e., area under the144

gap-time curve). Details on prompt design, filtering strategy, and implementation are provided in the145

appendix.146

The resulting 7-dimensional evaluation vector offers a fine-grained, multi-perspective assessment147

of solver performance, combining expert insight with LLM-generated domain knowledge to guide148

downstream optimization and selection.149
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3.1.2 Hypervolume-guided Component Selection150

To efficiently select promising solver pipelines from the large combinatorial space of LEGO com-151

ponent configurations, we first evaluate all candidates on small-scale training instances using the152

LLM-enhanced Performance Evaluation described above, resulting in a 7-dimensional performance153

vector for each.154

Due to the large number of configurations, we apply non-dominated sorting to identify the Pareto155

frontier S, which contains all configurations that are not strictly outperformed across all evaluation156

dimensions. This step filters out clearly suboptimal pipelines and retains those that offer distinct trade-157

offs in performance. However, the frontier S may still contain many similar or marginally different158

candidates. To further rank configurations within S, we compute the hypervolume contribution of159

each configuration d ∈ S:160

∆V (d) = V (S)− V (S \ {d}),
where V (·) denotes the hypervolume with respect to a fixed reference point. A larger ∆V (d) indicates161

that configuration d contributes uniquely to the performance diversity of the Pareto set.162

We rank all candidates in S by their hypervolume contribution and select the top-K configurations163

as solver pipelines for further tuning and deployment. This approach ensures efficient and diverse164

component selection, while keeping evaluation cost low by operating on small-scale instances.165

3.1.3 Size-transferable Parameter Tuning166

Since component selection is performed on small-scale training instances, we introduce a Size-167

transferable Parameter Tuning stage to ensure the resulting solver pipelines generalize effectively168

to larger-scale problems. This step jointly finalizes both component choices and their associated169

hyperparameters for deployment.170

If the training dataset includes instances of varying sizes—especially those comparable to the test-time171

scale—we directly perform parameter tuning on the larger training instances. In the more common172

case where only small-scale data is available, we leverage a controllable instance generator based173

on MILP-retrieval [21], which can synthesize structurally similar problems with adjustable scale,174

difficulty, and similarity. This allows LEGO to adaptively tune solvers under any data regime.175

In this stage, we apply Bayesian Optimization to search optimal hyperparameters for each of the176

top-K candidate configurations. The tuned candidates are then evaluated using the LLM-enhanced177

Performance Evaluation described earlier, and ranked using Hypervolume-Based Component Candi-178

dates Comparison. The final output is the best-performing configuration and its hyperparameters,179

optimized for both effectiveness and scalability.180

3.2 Component Library181

Building on the LLM-based evaluation and self-optimization framework introduced above, we apply182

LEGO to the important application domain of mixed-integer linear programming (MILP). Concretely,183

we instantiate LEGO within the widely adopted Predict-and-Search (P&S) paradigm, a dominant184

approach in learning-based MILP solving. Under this paradigm, LEGO decomposes the solver185

pipeline into four functional stages: Graph Embed, Neural Predict, Feasibility Repair, and Iterative186

Search. Each stage defines a modular interface with multiple candidate implementations, forming187

the LEGO Component Library. By systematically selecting and composing components across188

these stages, LEGO can generate diverse, adaptive solving frameworks tailored to different problem189

distributions and instance scales. A complete description of all components and their pseudocode is190

provided in the appendix.191

3.2.1 Graph Embed192

Directly feeding the raw algebraic form of a MILP problem into a neural model may obscure key193

structural invariances, such as row and column permutations that preserve problem equivalence.194

To retain these desirable symmetries, graph-based representations are commonly adopted, as they195

are inherently invariant to permutations of node order and layout. The role of the Graph Embed196

module is to transform a given MILP instance into a lossless graph representation that preserves its197

combinatorial and constraint structure.198
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In LEGO, we support several widely used encodings to capture the structure of MILPs: the bipartite199

graph representation [22], which connects variables and constraints as two disjoint node types; the200

tripartite graph representation [23], which further separates objective coefficients as a third node201

type; and two enhanced variants designed for foldable MILP instances: bipartite with random feature202

strategy and tripartite with random feature strategy, which inject randomized node features [24] to203

improve representation diversity in structurally repetitive problems called "foldable" problems. Each204

encoding defines a distinct component in the Graph Embed stage of our Component Library.205

3.2.2 Neural Predict206

Given the graph representation of a MILP instance, the Neural Predict module applies graph neural207

networks (GNNs) to learn mappings from problem structure to solution space. During training, a208

GNN is trained to predict optimal or near-optimal solutions based on the graph-structured input209

of MILP instances. At inference time, the network generalizes to unseen problems and provides210

predictions that serve as initial candidates or guidance for downstream search. LEGO integrates two211

widely used GNN architectures in this stage: the Graph Convolutional Network (GCN) [25] and the212

Graph Attention Network (GAT) [26], both featuring semi-convolutional designs to capture local and213

contextual structure. Network depth (i.e., number of layers) is treated as a tunable hyperparameter to214

support flexible capacity control during optimization.215

For problem settings where feasible regions are extremely small, fragmented, or hard to learn, neural216

networks may struggle to produce high-quality or even feasible predictions. To address this, LEGO217

also supports solver-based predictors using commercial solvers such as Gurobi [27] and SCIP [28].218

These solvers can generate initial feasible solutions reliably, even when neural predictors fail or are219

uncertain. Although solver-based initializations may be suboptimal compared to learned predictions220

in many cases, they offer robustness in challenging problem domains. LEGO thus enables hybrid221

designs within the Neural Predict stage, where learning-based and solver-based components can be222

used individually or in combination, depending on the characteristics of the target problem.223

3.2.3 Feasibility Repair224

The predictions generated by the Neural Predict module are not guaranteed to satisfy all constraints225

of the original MILP problem. Directly using such infeasible solutions in downstream search often226

leads to inefficient or invalid trajectories. To address this, the Feasibility Repair module aims to227

transform potentially infeasible predictions into valid solutions that respect problem constraints.228

LEGO integrates three complementary repair strategies. The first is the adaptive radius search [8],229

which defines a dynamic neighborhood around the predicted solution and invokes a solver to explore230

feasible candidates within this radius. This approach balances prediction guidance with combinatorial231

search flexibility. The second is the adaptive threshold method [29], which adjusts the prediction232

confidence threshold and delegates the unresolved portion of the solution to a lightweight solver.233

The third is the neighborhood repair strategy[30], which prunes the prediction set based on local234

constraint structures to reduce infeasibility. These strategies are implemented as interchangeable235

components in the repair stage. Detailed algorithmic descriptions can be found in the Appendix.236

3.2.4 Iterative Search237

Once a feasible solution is obtained, it can be further improved via iterative search, a widely adopted238

strategy in modern MILP solving frameworks. The core idea is to fix a subset of decision variables239

and iteratively refine a selected neighborhood using a solver. This process allows local exploration240

around promising solutions and can significantly enhance solution quality.241

LEGO supports five distinct strategies in this stage. The first is classical Large Neighborhood242

Search (LNS) [31], which randomly selects a subset of variables for re-optimization. We further243

include Adptive Large Neighborhood Search (ALNS) [32] with adaptive neighborhood size, which244

dynamically adjusts the scope of variables based on search feedback. In addition, we provide two245

heuristics based on the integrality of the relaxed LP solution: the Least Integral Heuristic (LIH) [33],246

which focuses on variables farthest from integral values, and the Most Integral Heuristic (MIH) [34],247

which prioritizes those closest to integrality. Finally, the Adaptive Constraint Partition (ACP) method248

[35] leverages variable correlations to construct meaningful subproblems for focused refinement.249
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Table 1: Comparison of objective value results with baseline approaches using the same execution
time. An upward arrow (↑) indicates that the result is better than the baseline. Boldface denotes the
best result for each problem instance.

SC1 SC2 MVC1 MVC2 MKS1 MKS2 MIS1 MIS2

Gurobi 24313.0 320036.5 27925.8 330816.4 34285.3 343707.2 -21966.7 -169223.2
SCIP 25317.5 919262.6 31256.7 490914.5 30616.0 1047136.9 -18687.9 -9125.2

Light-MILPopt 16528.1 164154.3 27548.1 278557.6 20589.2 208803.5 -22900.1 -228611.5
LEGO-Real (Ours) 16108.6↑ 160693.4↑ 26675.4↑ 271168.7↑ 19957.7↑ 203306.6↑ -23085.9↑ -228792.6↑
LEGO-Gen (Ours) 16183.3↑ 160647.8↑ 26709.9↑ 273948.6↑ 20063.3↑ 203054.1↑ -23204.0↑ -230261.0↑

Beyond local search, LEGO also allows the repaired prediction to guide commercial solvers directly.250

We integrate both Gurobi [27] and SCIP [28] as back-end solvers, enabling the predicted solution251

to serve as a warm-start or search bias. This dual-mode design—search-based refinement and252

solver-guided integration—makes this stage a flexible and powerful component in our framework.253

4 Experiment254

We conduct comprehensive experiments to evaluate the effectiveness, adaptability, and scalability of255

LEGO in solving mixed-integer linear programs (MILPs) through Predict-and-Search pipeline con-256

struction. The evaluation covers a diverse range of MILP problem settings, including both synthetic257

benchmarks and real-world instances. LEGO is compared against classical solvers and representative258

learning-based baselines, under standardized experimental protocols. The experimental settings259

are detailed in Section 4.1. To ensure a fair and comprehensive comparison, we employ multiple260

evaluation metrics to assess the performance of all methods considered in this study. Specifically,261

we include: a detailed comparison of solution quality under the same running time (Section 4.2),262

an evaluation of time efficiency under the same solution quality (Section 4.3), and a convergence263

analysis of the optimization process (Section 4.4).264

4.1 Experimental Settings265

Dataset. We consider four representative types of NP-hard MILP problems: Set Covering (SC)266

[36], Minimum Vertex Cover (MVC) [37], Maximum Independent Set (MIS) [38], and Mixed 0-1267

Knapsack Set (MKS) [39]. For each problem type, we evaluate two representative scales: one with268

approximately 100K decision variables and constraints (e.g., MVC1), and another with approximately269

1M scale (e.g., MVC2). All problems are formulated as minimization tasks. Detailed mathematical270

formulations, instance generation strategies, and exact instance sizes are provided in the appendix.271

Baseline Approaches. We compare LEGO with three strong baselines: the state-of-the-art com-272

mercial solver Gurobi 12.0.1 [27], the academic open-source solver SCIP 9.2.1 [28], and the recent273

learning-based Predict-and-Search framework Light-MILPopt [26]. In addition, we evaluate two274

variants of LEGO. The first, LEGO-Real, uses access to large-scale training data for final size-275

transferable parameter tuning. The second, LEGO-Gen, assumes only small-scale training data is276

available and relies on our MILP-retrieval-based instance generator to synthesize large-scale instances277

for component selection and size-transferable parameter tuning. These two variants allow us to assess278

LEGO’s performance under both data-rich and data-limited scenarios.279

Environment. All experiments are conducted on a server equipped with Intel Xeon Platinum 8375C280

CPUs (2.90GHz) and four NVIDIA TESLA V100 GPUs (32GB each). Detailed experimental settings281

and runtime configurations are provided in the appendix.282

4.2 Comparisons of Solution Effectiveness283

To compare the solution effectiveness of different solvers, we evaluate all methods under the same284

execution time budget across eight large-scale MILP benchmarks, covering four problem types285

(SC, MVC, MKS, MIS) and two problem scales (100K and 1M). All problems are formulated as286

minimization tasks, where smaller objective values indicate better solution quality. This setting aligns287

with real-world scenarios, where solvers are often required to deliver high-quality solutions within288

fixed time limits. As shown in Table 1, our method LEGO achieves clearly better or comparable289

results across all tasks.290
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Table 2: Comparison of execution times under the same target value. A greater-than symbol (>)
indicates the inability to achieve the target objective function in some instances within the maximum
running time. Boldface is used to denote the best results.

SC1 SC2 MVC1 MVC2 MKS1 MKS2 MIS1 MIS2

Gurobi >30000s >30000s >30000s >30000s >30000s >30000s >30000s >30000s
SCIP >30000s >30000s >30000s >30000s >30000s >30000s >30000s >30000s

Light-MILPopt 597.4s 3477.0s 594.7s 3473.4s 3909.9s 7931.2s 590.8s 3468.9s
LEGO-Real (Ours) 228.4s↑ 1936.6s↑ 103.8s↑ 536.0s↑ 2264.6s↑ 3285.1s↑ 155.9s↑ 3367.7s↑
LEGO-Gen (Ours) 473.0s↑ 1542.1s↑ 76.3s↑ 786.4s↑ 2038.3s↑ 4923.2s↑ 225.0s↑ 2438.9s↑

Traditional solvers such as Gurobi and SCIP yield significantly worse objective values under the291

same time constraints. For instance, Gurobi performs poorly on MVC2 and MIS2, while SCIP shows292

large suboptimality on SC2 and MKS2, where its returned values are more than five times worse than293

those of LEGO. These results indicate that classical solvers struggle to make effective progress on294

extremely large MILPs within limited time, due to the exponential search space and lack of learned295

heuristics. This contrast highlights the need for scalable methods in large-instance settings.296

Compared to the strong learning-based baseline Light-MILPopt, both LEGO variants achieve con-297

sistently better objective values on all benchmarks. LEGO-Real performs particularly well on tasks298

where the training and test distributions are closely aligned, such as MVC1 and MKS1. LEGO-Gen,299

on the other hand, often outperforms LEGO-Real on large-scale or more complex tasks like SC2 and300

MIS2, thanks to its broader training distribution via synthetic MILP generation. These improvements301

demonstrate the benefit of LEGO’s modular training strategy and its ability to generalize under302

different problem characteristics.303

Overall, LEGO delivers strong and stable performance across diverse problem types and scales. Its304

hierarchical structure and component-wise learning enable it to adapt more effectively to large and305

complex MILPs than existing monolithic methods. The ability to outperform both traditional solvers306

and advanced learning-based baselines under the same time budget confirms LEGO’s effectiveness as307

a general and practical framework for high-quality large-scale MILP solving.308

4.3 Comparisons of Solving Efficiency309

We evaluate the time efficiency of different methods under the same target objective value, meaning310

that all solvers are required to reach the same solution quality, and we compare the time needed311

to do so. As shown in Table 2, the two traditional solvers, Gurobi and SCIP, fail to reach the312

target within the 30,000-second limit on all tested instances. This highlights the difficulty of scaling313

general-purpose MILP solvers to high-dimensional problems with hundreds of thousands or millions314

of variables and constraints.315

In contrast, both LEGO-Real and LEGO-Gen are able to reach the target solutions in significantly316

less time than the learning-based baseline Light-MILPopt. For example, on MVC1, LEGO-Real317

reduces execution time from 594.7s to 103.8s (82.5% faster), while LEGO-Gen further reduces it318

to just 76.3s (87.2% faster). On SC2, LEGO-Gen achieves a 55.6% speedup over Light-MILPopt,319

while LEGO-Real saves 44.3% of execution time. On average, LEGO reaches the same target values320

2–6× faster across different problem types and scales. These results demonstrate that LEGO achieves321

comparable or better efficiency than the best existing learning-based Predict-and-Search framework.322

We also observe that LEGO-Real is generally faster than LEGO-Gen on smaller-scale problems,323

likely due to its access to real large-instance training data, which helps specialize the learned policies.324

However, on larger-scale or more diverse instances (e.g., SC2, MIS2), LEGO-Gen often performs325

better, showcasing its stronger generalization capability through synthetic instance retrieval and326

adaptive training. This complementary behavior between the two variants suggests that LEGO is327

effective both when real data is available and when generalization to unseen distributions is required.328

We attribute LEGO’s superior efficiency to its flexible and adaptive design. By providing a rich329

set of modular components and a wide range of tunable hyperparameters, LEGO can adapt its330

optimization strategy to the structural characteristics of each specific MILP instance. This allows the331

framework to tailor its behavior more precisely, leading to faster convergence and better scalability.332

In contrast, Light-MILPopt follows a monolithic approach where a single learned policy is applied333

uniformly across all problems, limiting its ability to generalize or specialize to different tasks.334
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Figure 3: Time-objective convergence curves for all benchmark MILPs. Each subfigure shows the
objective value (y-axis) over time (x-axis) for a specific MILP task.

LEGO’s compositional nature thus enables more problem-aware optimization and consistently high335

performance across diverse benchmarks.336

4.4 Analysis of Convergence337

We analyze the convergence behavior of all methods by visualizing how the objective value evolves338

over time across eight benchmark MILPs, as shown in Figure 3. Each curve reflects how efficiently339

a solver improves solution quality under a fixed time budget. The results show that both LEGO-340

Real and LEGO-Gen converge significantly faster than traditional solvers (Gurobi, SCIP) and the341

learning-based baseline Light-MILPopt, especially in early stages of optimization.342

LEGO variants consistently achieve rapid descent in the objective value curve, reaching high-quality343

solutions within a few minutes on 100K-scale problems, and under a few hundred seconds on 1M-344

scale ones. In contrast, Gurobi and SCIP either plateau early or make slow progress, particularly345

on large-scale instances like SC2 and MIS2. Light-MILPopt shows moderate convergence but lags346

behind LEGO in nearly all tasks. These patterns demonstrate the effectiveness of LEGO’s structural347

decomposition and local decision policies, which enable faster and more focused optimization.348

Moreover, LEGO-Gen often matches or even exceeds LEGO-Real in convergence speed on large-349

scale problems, such as MVC2 and SC2. This suggests that the synthetic training strategy and MILP350

retrieval mechanism empower LEGO-Gen with strong generalization and adaptation capabilities,351

even when real data is unavailable. Overall, the convergence curves highlight LEGO’s robustness,352

scalability, and practical efficiency in solving large MILPs.353

5 Conclusion354

We propose LEGO, a general and modular framework for adaptive algorithm construction through355

component selection and configuration. Inspired by LEGO-style modularity, the framework is356

designed to assemble high-performing solving pipelines tailored to specific problem instances. In357

this work, we instantiate LEGO within the Predict-and-Search paradigm for solving large-scale358

MILPs, where it selects and configures components and hyperparameters based on structural priors.359

To enhance adaptability, LEGO can generate synthetic training data at varying scales and leverage360

hybrid evaluation metrics, including LLM-informed assessments, to identify robust configurations361

even under limited training dataset.362

Extensive experiments show that LEGO outperforms traditional solvers and strong learning-based363

baselines in both convergence speed and solution effectiveness. However, our current framework364

relies on the quality of the problem generator for training instance construction. In future work, we365

aim to further enhance the task-driven evaluation metrics to better align with practical objectives,366

and continuously expand the component library by integrating state-of-the-art modules, thereby367

improving LEGO’s adaptability and performance across diverse problem settings.368
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NeurIPS Paper Checklist460

1. Claims461

Question: Do the main claims made in the abstract and introduction accurately reflect the462

paper’s contributions and scope?463

Answer: [Yes]464

Justification: The abstract and the final paragraph of the introduction clearly state the paper’s465

contributions, including the formulation of LEGO as a general framework for adaptive466

algorithm construction and its instantiation in MILP solving. These claims are consistent467

with the theoretical formulation and empirical results presented in the paper.468

Guidelines:469

• The answer NA means that the abstract and introduction do not include the claims470

made in the paper.471

• The abstract and/or introduction should clearly state the claims made, including the472

contributions made in the paper and important assumptions and limitations. A No or473

NA answer to this question will not be perceived well by the reviewers.474

• The claims made should match theoretical and experimental results, and reflect how475

much the results can be expected to generalize to other settings.476

• It is fine to include aspirational goals as motivation as long as it is clear that these goals477

are not attained by the paper.478

2. Limitations479

Question: Does the paper discuss the limitations of the work performed by the authors?480

Answer: [Yes]481

Justification: The limitations of our approach are discussed at the end of the Conclusion482

section, where we acknowledge the framework’s reliance on the quality of the problem483

generator and outline future work to address this limitation by developing more generalizable484

generation and retrieval mechanisms.485

Guidelines:486

• The answer NA means that the paper has no limitation while the answer No means that487

the paper has limitations, but those are not discussed in the paper.488

• The authors are encouraged to create a separate "Limitations" section in their paper.489

• The paper should point out any strong assumptions and how robust the results are to490

violations of these assumptions (e.g., independence assumptions, noiseless settings,491

model well-specification, asymptotic approximations only holding locally). The authors492

should reflect on how these assumptions might be violated in practice and what the493

implications would be.494

• The authors should reflect on the scope of the claims made, e.g., if the approach was495

only tested on a few datasets or with a few runs. In general, empirical results often496

depend on implicit assumptions, which should be articulated.497

• The authors should reflect on the factors that influence the performance of the approach.498

For example, a facial recognition algorithm may perform poorly when image resolution499

is low or images are taken in low lighting. Or a speech-to-text system might not be500

used reliably to provide closed captions for online lectures because it fails to handle501

technical jargon.502

• The authors should discuss the computational efficiency of the proposed algorithms503

and how they scale with dataset size.504

• If applicable, the authors should discuss possible limitations of their approach to505

address problems of privacy and fairness.506

• While the authors might fear that complete honesty about limitations might be used by507

reviewers as grounds for rejection, a worse outcome might be that reviewers discover508

limitations that aren’t acknowledged in the paper. The authors should use their best509

judgment and recognize that individual actions in favor of transparency play an impor-510

tant role in developing norms that preserve the integrity of the community. Reviewers511

will be specifically instructed to not penalize honesty concerning limitations.512
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3. Theory assumptions and proofs513

Question: For each theoretical result, does the paper provide the full set of assumptions and514

a complete (and correct) proof?515

Answer: [NA]516

Justification: The paper does not include formal theoretical results or proofs; it focuses on a517

modular framework and its empirical evaluation.518

Guidelines:519

• The answer NA means that the paper does not include theoretical results.520

• All the theorems, formulas, and proofs in the paper should be numbered and cross-521

referenced.522

• All assumptions should be clearly stated or referenced in the statement of any theorems.523

• The proofs can either appear in the main paper or the supplemental material, but if524

they appear in the supplemental material, the authors are encouraged to provide a short525

proof sketch to provide intuition.526

• Inversely, any informal proof provided in the core of the paper should be complemented527

by formal proofs provided in appendix or supplemental material.528

• Theorems and Lemmas that the proof relies upon should be properly referenced.529

4. Experimental result reproducibility530

Question: Does the paper fully disclose all the information needed to reproduce the main ex-531

perimental results of the paper to the extent that it affects the main claims and/or conclusions532

of the paper (regardless of whether the code and data are provided or not)?533

Answer: [Yes]534

Justification: We provide detailed descriptions of experimental configurations, solver set-535

tings, and hyperparameter choices in both the main text (Section 4) and Appendix A. Ad-536

ditionally, we have released a demo of LEGO at https://anonymous.4open.science/537

r/LEGO-B36D, which includes code and instructions to facilitate quick reproduction of our538

key results.539

Guidelines:540

• The answer NA means that the paper does not include experiments.541

• If the paper includes experiments, a No answer to this question will not be perceived542

well by the reviewers: Making the paper reproducible is important, regardless of543

whether the code and data are provided or not.544

• If the contribution is a dataset and/or model, the authors should describe the steps taken545

to make their results reproducible or verifiable.546

• Depending on the contribution, reproducibility can be accomplished in various ways.547

For example, if the contribution is a novel architecture, describing the architecture fully548

might suffice, or if the contribution is a specific model and empirical evaluation, it may549

be necessary to either make it possible for others to replicate the model with the same550

dataset, or provide access to the model. In general. releasing code and data is often551

one good way to accomplish this, but reproducibility can also be provided via detailed552

instructions for how to replicate the results, access to a hosted model (e.g., in the case553

of a large language model), releasing of a model checkpoint, or other means that are554

appropriate to the research performed.555

• While NeurIPS does not require releasing code, the conference does require all submis-556

sions to provide some reasonable avenue for reproducibility, which may depend on the557

nature of the contribution. For example558

(a) If the contribution is primarily a new algorithm, the paper should make it clear how559

to reproduce that algorithm.560

(b) If the contribution is primarily a new model architecture, the paper should describe561

the architecture clearly and fully.562

(c) If the contribution is a new model (e.g., a large language model), then there should563

either be a way to access this model for reproducing the results or a way to reproduce564

the model (e.g., with an open-source dataset or instructions for how to construct565

the dataset).566
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(d) We recognize that reproducibility may be tricky in some cases, in which case567

authors are welcome to describe the particular way they provide for reproducibility.568

In the case of closed-source models, it may be that access to the model is limited in569

some way (e.g., to registered users), but it should be possible for other researchers570

to have some path to reproducing or verifying the results.571

5. Open access to data and code572

Question: Does the paper provide open access to the data and code, with sufficient instruc-573

tions to faithfully reproduce the main experimental results, as described in supplemental574

material?575

Answer: [Yes]576

Justification: We provide open access to a demo implementation of LEGO at https:577

//anonymous.4open.science/r/LEGO-B36D, which includes code, example data, and578

detailed instructions to reproduce the main experimental results. Further reproduction details579

are also described in the supplemental material, following NeurIPS code and data submission580

guidelines.581

Guidelines:582

• The answer NA means that paper does not include experiments requiring code.583

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/584

public/guides/CodeSubmissionPolicy) for more details.585

• While we encourage the release of code and data, we understand that this might not be586

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not587

including code, unless this is central to the contribution (e.g., for a new open-source588

benchmark).589

• The instructions should contain the exact command and environment needed to run to590

reproduce the results. See the NeurIPS code and data submission guidelines (https:591

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.592

• The authors should provide instructions on data access and preparation, including how593

to access the raw data, preprocessed data, intermediate data, and generated data, etc.594

• The authors should provide scripts to reproduce all experimental results for the new595

proposed method and baselines. If only a subset of experiments are reproducible, they596

should state which ones are omitted from the script and why.597

• At submission time, to preserve anonymity, the authors should release anonymized598

versions (if applicable).599

• Providing as much information as possible in supplemental material (appended to the600

paper) is recommended, but including URLs to data and code is permitted.601

6. Experimental setting/details602

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-603

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the604

results?605

Answer: [Yes]606

Justification: We provide comprehensive descriptions of the experimental setup in both607

the main paper (Section 4) and the appendix, including details on datasets, data splits,608

hyperparameter settings, and selection strategies. In addition, the open-source demo609

at https://anonymous.4open.science/r/LEGO-B36D contains the full codebase and610

configuration files needed to reproduce the experiments.611

Guidelines:612

• The answer NA means that the paper does not include experiments.613

• The experimental setting should be presented in the core of the paper to a level of detail614

that is necessary to appreciate the results and make sense of them.615

• The full details can be provided either with the code, in appendix, or as supplemental616

material.617

7. Experiment statistical significance618
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Question: Does the paper report error bars suitably and correctly defined or other appropriate619

information about the statistical significance of the experiments?620

Answer: [Yes]621

Justification: We provide error bar analyses based on multiple experimental runs in the622

appendix, including explanations of the sources of variability (e.g., random seeds) and the623

method used for computing standard deviations. These results support the robustness and624

statistical significance of our main empirical findings.625

Guidelines:626

• The answer NA means that the paper does not include experiments.627

• The authors should answer "Yes" if the results are accompanied by error bars, confi-628

dence intervals, or statistical significance tests, at least for the experiments that support629

the main claims of the paper.630

• The factors of variability that the error bars are capturing should be clearly stated (for631

example, train/test split, initialization, random drawing of some parameter, or overall632

run with given experimental conditions).633

• The method for calculating the error bars should be explained (closed form formula,634

call to a library function, bootstrap, etc.)635

• The assumptions made should be given (e.g., Normally distributed errors).636

• It should be clear whether the error bar is the standard deviation or the standard error637

of the mean.638

• It is OK to report 1-sigma error bars, but one should state it. The authors should639

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis640

of Normality of errors is not verified.641

• For asymmetric distributions, the authors should be careful not to show in tables or642

figures symmetric error bars that would yield results that are out of range (e.g. negative643

error rates).644

• If error bars are reported in tables or plots, The authors should explain in the text how645

they were calculated and reference the corresponding figures or tables in the text.646

8. Experiments compute resources647

Question: For each experiment, does the paper provide sufficient information on the com-648

puter resources (type of compute workers, memory, time of execution) needed to reproduce649

the experiments?650

Answer: [Yes]651

Justification: We specify the type of compute workers used (e.g., CPU/GPU configurations)652

in the experimental setup section of the main paper. An estimate of the total compute cost,653

including time and resource usage across different experiments, is provided in the appendix.654

Guidelines:655

• The answer NA means that the paper does not include experiments.656

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,657

or cloud provider, including relevant memory and storage.658

• The paper should provide the amount of compute required for each of the individual659

experimental runs as well as estimate the total compute.660

• The paper should disclose whether the full research project required more compute661

than the experiments reported in the paper (e.g., preliminary or failed experiments that662

didn’t make it into the paper).663

9. Code of ethics664

Question: Does the research conducted in the paper conform, in every respect, with the665

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?666

Answer: [Yes]667

Justification: We have carefully reviewed the NeurIPS Code of Ethics and confirm that668

our research complies fully with its principles. Our work does not involve human subjects,669

private or sensitive data, or applications with foreseeable harmful impact. We have followed670

best practices in dataset usage, code release, and reproducibility, and have taken care to671

consider potential societal and environmental impacts.672
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Guidelines:673

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.674

• If the authors answer No, they should explain the special circumstances that require a675

deviation from the Code of Ethics.676

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-677

eration due to laws or regulations in their jurisdiction).678

10. Broader impacts679

Question: Does the paper discuss both potential positive societal impacts and negative680

societal impacts of the work performed?681

Answer: [NA]682

Justification: Our work focuses on the development of a general-purpose optimization683

framework and does not involve data generation, interaction with end-users, or deployment in684

application-specific contexts. As such, we do not foresee any direct societal impact—positive685

or negative—at this stage, nor any obvious potential for malicious use.686

Guidelines:687

• The answer NA means that there is no societal impact of the work performed.688

• If the authors answer NA or No, they should explain why their work has no societal689

impact or why the paper does not address societal impact.690

• Examples of negative societal impacts include potential malicious or unintended uses691

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations692

(e.g., deployment of technologies that could make decisions that unfairly impact specific693

groups), privacy considerations, and security considerations.694

• The conference expects that many papers will be foundational research and not tied695

to particular applications, let alone deployments. However, if there is a direct path to696

any negative applications, the authors should point it out. For example, it is legitimate697

to point out that an improvement in the quality of generative models could be used to698

generate deepfakes for disinformation. On the other hand, it is not needed to point out699

that a generic algorithm for optimizing neural networks could enable people to train700

models that generate Deepfakes faster.701

• The authors should consider possible harms that could arise when the technology is702

being used as intended and functioning correctly, harms that could arise when the703

technology is being used as intended but gives incorrect results, and harms following704

from (intentional or unintentional) misuse of the technology.705

• If there are negative societal impacts, the authors could also discuss possible mitigation706

strategies (e.g., gated release of models, providing defenses in addition to attacks,707

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from708

feedback over time, improving the efficiency and accessibility of ML).709

11. Safeguards710

Question: Does the paper describe safeguards that have been put in place for responsible711

release of data or models that have a high risk for misuse (e.g., pretrained language models,712

image generators, or scraped datasets)?713

Answer: [NA] .714

Justification: Our work does not involve the release of pretrained generative models, large715

language models, or datasets that carry a high risk of misuse. Therefore, no specific716

safeguards are necessary.717

Guidelines:718

• The answer NA means that the paper poses no such risks.719

• Released models that have a high risk for misuse or dual-use should be released with720

necessary safeguards to allow for controlled use of the model, for example by requiring721

that users adhere to usage guidelines or restrictions to access the model or implementing722

safety filters.723

• Datasets that have been scraped from the Internet could pose safety risks. The authors724

should describe how they avoided releasing unsafe images.725
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• We recognize that providing effective safeguards is challenging, and many papers do726

not require this, but we encourage authors to take this into account and make a best727

faith effort.728

12. Licenses for existing assets729

Question: Are the creators or original owners of assets (e.g., code, data, models), used in730

the paper, properly credited and are the license and terms of use explicitly mentioned and731

properly respected?732

Answer: [Yes]733

Justification: All external assets used in our work, including datasets, codebases, and models,734

are properly cited in the main paper. We have ensured that their licenses and terms of use are735

respected, and we include references to the original papers and repositories where applicable.736

Guidelines:737

• The answer NA means that the paper does not use existing assets.738

• The authors should cite the original paper that produced the code package or dataset.739

• The authors should state which version of the asset is used and, if possible, include a740

URL.741

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.742

• For scraped data from a particular source (e.g., website), the copyright and terms of743

service of that source should be provided.744

• If assets are released, the license, copyright information, and terms of use in the745

package should be provided. For popular datasets, paperswithcode.com/datasets746

has curated licenses for some datasets. Their licensing guide can help determine the747

license of a dataset.748

• For existing datasets that are re-packaged, both the original license and the license of749

the derived asset (if it has changed) should be provided.750

• If this information is not available online, the authors are encouraged to reach out to751

the asset’s creators.752

13. New assets753

Question: Are new assets introduced in the paper well documented and is the documentation754

provided alongside the assets?755

Answer: [Yes]756

Justification: Our paper introduces new algorithmic components, which we plan to open-757

source upon publication. A demo showcasing core functionalities is already publicly758

available and can be freely used. The final release will include detailed documentation759

covering usage instructions, license, limitations, and implementation details.760

Guidelines:761

• The answer NA means that the paper does not release new assets.762

• Researchers should communicate the details of the dataset/code/model as part of their763

submissions via structured templates. This includes details about training, license,764

limitations, etc.765

• The paper should discuss whether and how consent was obtained from people whose766

asset is used.767

• At submission time, remember to anonymize your assets (if applicable). You can either768

create an anonymized URL or include an anonymized zip file.769

14. Crowdsourcing and research with human subjects770

Question: For crowdsourcing experiments and research with human subjects, does the paper771

include the full text of instructions given to participants and screenshots, if applicable, as772

well as details about compensation (if any)?773

Answer: [NA]774

Justification: Our work does not involve any form of crowdsourcing or research with human775

subjects.776

Guidelines:777
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• The answer NA means that the paper does not involve crowdsourcing nor research with778

human subjects.779

• Including this information in the supplemental material is fine, but if the main contribu-780

tion of the paper involves human subjects, then as much detail as possible should be781

included in the main paper.782

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,783

or other labor should be paid at least the minimum wage in the country of the data784

collector.785

15. Institutional review board (IRB) approvals or equivalent for research with human786

subjects787

Question: Does the paper describe potential risks incurred by study participants, whether788

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)789

approvals (or an equivalent approval/review based on the requirements of your country or790

institution) were obtained?791

Answer: [NA] .792

Justification: Our research does not involve human subjects or any form of human-subject793

experimentation, and therefore no IRB or equivalent ethical review was necessary.794

Guidelines:795

• The answer NA means that the paper does not involve crowdsourcing nor research with796

human subjects.797

• Depending on the country in which research is conducted, IRB approval (or equivalent)798

may be required for any human subjects research. If you obtained IRB approval, you799

should clearly state this in the paper.800

• We recognize that the procedures for this may vary significantly between institutions801

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the802

guidelines for their institution.803

• For initial submissions, do not include any information that would break anonymity (if804

applicable), such as the institution conducting the review.805

16. Declaration of LLM usage806

Question: Does the paper describe the usage of LLMs if it is an important, original, or807

non-standard component of the core methods in this research? Note that if the LLM is used808

only for writing, editing, or formatting purposes and does not impact the core methodology,809

scientific rigorousness, or originality of the research, declaration is not required.810

Answer: [Yes]811

Justification: Our paper includes an LLM-enhanced performance evaluation component,812

where large language models are used to generate novel evaluation metrics. The specific813

models used, their configurations, and their role in the evaluation process are clearly de-814

scribed in the paper, along with appropriate citations.815

Guidelines:816

• The answer NA means that the core method development in this research does not817

involve LLMs as any important, original, or non-standard components.818

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)819

for what should or should not be described.820
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